The optimization problem for determining the functional dependence of the variable order of the fractional derivative of the Gerasimov-Caputo type
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 47 (2024) no. 2, pp. 35-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When solving mathematical modeling problems, it is often necessary to turn to the theory of integral and differential calculus. This theory can be used to describe dynamic processes of various types. The use of fractional derivatives allows us to refine some models by taking into account the memory effect, which is expressed in the equations depending on the current state of the system from previous states. This effect is called non-locality and its intensity is determined by the value of the exponent in the fractional derivative. Classically, this value $\alpha$$\alpha$ a noninteger constant, but there are also generalizations for time-varying nonlocality and other functional dependencies. Fractional differential models are finding increasing application in the physical, mathematical, and technical sciences. However, given the nature of the modeled process, the selection of various parameters for such models must be carried out empirically. Model parameters are refined by iterating through values and comparing simulation results with experimental data representing the process. This process continues until the results begin to qualitatively approximate the data, which is a time-consuming process that inevitably leads to ideas about solving inverse problems. The purpose of this work is to demonstrate that it is possible to use methods of unconditional optimization to solve inverse problems and determine the type of functional dependence $\alpha$(t). The direct problem is formulated as a Cauchy problem for a fractional differential equation, where the derivative is interpreted in the sense of Gerasimov-Caputo with a variable exponent $\alpha$(t) for the fractional derivative. The direct problem is solved numerically using a nonlocal, implicit finite difference scheme. The inverse problem is defined as the problem of discrete minimization of the function $\alpha$(t) based on experimental data. To solve this problem, we have chosen the Levenberg-Marquardt iterative method. Through test examples, we have shown that this method can be used for unconstrained optimization to determine the shape of the function $\alpha$(t) and its optimal values in various models.
Keywords: Inverse problems, non-conditional optimization, Newton methods of function minimization, fractional derivatives, Gerasimov-Caputo, memory effect, non-locality, implicit finite-difference schemes.
Mots-clés : Levenberg-Marquardt algorithm
@article{VKAM_2024_47_2_a2,
     author = {D. A. Tvyordyj and R. I. Parovik},
     title = {The optimization problem for determining the functional dependence of the variable order of the fractional derivative of the {Gerasimov-Caputo} type},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {35--57},
     year = {2024},
     volume = {47},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a2/}
}
TY  - JOUR
AU  - D. A. Tvyordyj
AU  - R. I. Parovik
TI  - The optimization problem for determining the functional dependence of the variable order of the fractional derivative of the Gerasimov-Caputo type
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 35
EP  - 57
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a2/
LA  - ru
ID  - VKAM_2024_47_2_a2
ER  - 
%0 Journal Article
%A D. A. Tvyordyj
%A R. I. Parovik
%T The optimization problem for determining the functional dependence of the variable order of the fractional derivative of the Gerasimov-Caputo type
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 35-57
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a2/
%G ru
%F VKAM_2024_47_2_a2
D. A. Tvyordyj; R. I. Parovik. The optimization problem for determining the functional dependence of the variable order of the fractional derivative of the Gerasimov-Caputo type. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 47 (2024) no. 2, pp. 35-57. http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a2/

[1] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 540 pp. | MR

[2] Iomin A., “Fractional-time quantum dynamics”, Physical Review E, 80:2 (2009), 1–4 DOI: 10.1103/PhysRevE.80.022103 | DOI | MR

[3] Bagley R. L., Torvik P. J., “A theoretical basis for the application of fractional calculus to viscoelasticity”, Journal of rheology, 27:3 (1983), 201–210 DOI: 10.1122/1.549724 | DOI | Zbl

[4] Coimbra C. F. M., “Mechanics with variable-order differential operators”, Annalen der Physik, 12:11–12 (2003), 692–703 DOI: 10.1002/andp.200310032 | DOI | MR | Zbl

[5] Rossikhin Y. A., Shitikova M. V., “Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results”, Applied Mechanics Reviews, 63:1:010801 (2010), 1–52 DOI: 10.1115/1.4000563 | DOI

[6] Metzler R., Klafter J., “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics”, Journal of Physics A Mathematical and General, 37:31 (2004), 161–208 DOI: 10.1088/0305-4470/37/31/R01 | DOI | MR

[7] Moroz L. I., Maslovskaya A. G., “Numerical Simulation of an Anomalous Diffusion Process Based on a Scheme of a Higher Order of Accuracy”, Mathematical Models and Computer Simulations, 13:3 (2021), 492–501 DOI: 10.1134/S207004822103011X | DOI | MR

[8] Parovik R. I., “Mathematical modeling of linear fractional oscillators”, Mathematics, 8:11:1879 (2020), 1–26 DOI: 10.3390/math8111879 | DOI

[9] Sun H. G., Chen W., Wei H., Chen Y. Q., “A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems”, The European Physical Journal-Special Topics, 193:1 (2011), 185–192 DOI: 10.1140/epjst/e2011-01390-6 | DOI

[10] Volterra V., “Sur les équations intégro-différentielles et leurs applications”, Acta Mathematica, 35:1 (1912), 295–356 DOI: 10.1007/BF02418820 | DOI | MR

[11] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[12] Rekhviashvili S. Sh., Pskhu A. V., “Drobnyi ostsillyator s eksponentsialno-stepennoi funktsiei pamyati”, Pisma v ZhTF, 48:7 (2022), 33–35 DOI: 10.21883/PJTF.2022.07.52290.19137

[13] Gerasimov A. N., “Generalization of linear deformation laws and their application to internal friction problems”, Applied Mathematics and Mechanics, 12 (1948), 529–539 | MR

[14] Caputo M., “Linear models of dissipation whose Q is almost frequency independent – II”, Geophysical Journal International, 13:5 (1967), 529–539 DOI: 10.1111/j.1365-246X.1967.tb02303.x | DOI

[15] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory, Springer, Berlin, 2013, 373 pp. DOI: 10.1007/978-3-642-33911-0 | MR

[16] Westerlund S., “Dead matter has memory!”, Physica Scripta, 43:2 (1991), 174–179 DOI: 10.1088/0031-8949/43/2/011 | DOI | MR

[17] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: a review”, Proceedings of the Royal Society A, 476:2234 (2020), 20190498 DOI: 10.1098/rspa.2019.0498 | DOI | MR

[18] Lin R., Liu F., Anh V., Turner I. W., “Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation”, Applied Mathematics and Computation, 212:2 (2009), 435–445 DOI: 10.1016/j.amc.2009.02.047 | DOI | MR | Zbl

[19] Fang Z. W., Sun H. W., Wang H., “A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations”, Computers Mathematics with Applications, 80:5 (2020), 1443–1458 DOI: 10.1016/j.camwa.2020.07.009 | DOI | MR | Zbl

[20] Sahoo S., Saha Ray S., Das S., Bera R. K., “The formation of dynamic variable-order fractional differential equation”, International Journal of Modern Physics C, 27:07 (2016), 1650074 DOI: 10.1142/S0129183116500741 | DOI | MR

[21] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6:1:23 (2022), 1–27 DOI: 10.3390/fractalfract6010023

[22] Tverdyi D. A., Parovik R. I., Makarov E. O., Firstov P. P., “Research of the process of radon accumulation in the accumulating chamber taking into account the nonlinearity of its entrance”, E3S Web Conference, 196:02027 (2020), 1–6 DOI: 10.1051/e3sconf/202019602027

[23] Tverdyi D. A., Makarov E. O., Parovik R. I., “Hereditary Mathematical Model of the Dynamics of Radon Accumulation in the Accumulation Chamber”, Mathematics, 11:4:850 (2023), 1–20 DOI: 10.3390/math11040850 | DOI | MR

[24] Tverdyi D. A., Makarov E. O., Parovik R. I., “Research of Stress-Strain State of Geo-Environment by Emanation Methods on the Example of alpha(t)-Model of Radon Transport”, Bulletin KRASEC. Physical and Mathematical Sciences, 44:3 (2023), 86–104 DOI: 10.26117/2079-6641-2023-44-3-86-104 | MR

[25] Rudakov V. P., Emanatsionnyi monitoring geosred i protsessov, Nauchnyi mir, Moskva, 2009, 175 pp.

[26] Cox D. R. Hinkley D. V., Theoretical Statistics, 1st edition, Chapman Hall/CRC, London, 1979, 528 pp. | MR

[27] Reviznikov D. L., Morozov A. Yu., “Algoritmy chislennogo resheniya drobno-differentsialnykh uravnenii s intervalnymi parametrami”, Sibirskii zhurnal industrialnoi matematiki, 26:4 (2023), 93–108 DOI: 10.33048/SIBJIM.2023.26.407 | MR

[28] Hadamard J. S., “Sur les problemes aux derivees partielles et leur significa tion physique”, Princeton University Bulletin, 13:4 (1902), 49–52 | MR

[29] Morozov V. A., Methods for Solving Incorrectly Posed Problems, New York, Springer, 1984, 257 pp. | MR

[30] Mueller J. L., Siltanen S., Linear and Nonlinear Inverse Problems with Practical Applications, Society for Industrial and Applied Mathematics, Philadelphia, USA, 2012, 351 pp. | MR | Zbl

[31] Tarantola A., Inverse problem theory : methods for data fitting and model parameter estimation, Elsevier Science Pub. Co., Amsterdam and New York, 1987, 613 pp. | MR

[32] Tahmasebi P., Javadpour F., Sahimi M., “Stochastic shale permeability matching: Three-dimensional characterization and modeling”, International Journal of Coal Geology, 165:1 (2016), 231–242 DOI: 10.1016/j.coal.2016.08.024 | DOI

[33] Lailly P., “The seismic inverse problem as a sequence of before stack migrations”, Conference on Inverse Scattering, Theory and application, 1983, 206–220 | MR

[34] Mohamad-Djafari A., Inverse Problems in Vision and 3D Tomography, ISTE-WILEY, New-York, 2010, 480 pp.

[35] Hayotov A. R., Jeon S., Shadimetov K. M., “Application of optimal quadrature formulas for reconstruction of CT images”, Journal of Computational and Applied Mathematics, 388 (2021), 113313 DOI: 10.1016/j.cam.2020.113313 | DOI | MR

[36] Gubbins D., “Book reviews. Inverse Problem Theory. Methods for Data Fitting and Model Parameter Estimation Albert Tarantola. Elsevier, Amsterdam and New York, 1987”, Geophysical Journal International, 94:1 (1988), 167–168 DOI: 10.1111/j.1365-246X.1988.tb03436.x | DOI

[37] Tverdyi D. A., Parovik R. I., “Hybrid GPU–CPU Efficient Implementation of a Parallel Numerical Algorithm for Solving the Cauchy Problem for a Nonlinear Differential Riccati Equation of Fractional Variable Order”, Mathematics, 11:15:3358 (2023), 1–21 DOI: 10.3390/math11153358 | DOI

[38] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, Moskva, 1977, 736 pp. | MR

[39] Dennis J. E., Robert Jr., Schnabel B., Numerical methods for unconstrained optimization and nonlinear equations, SIAM, Philadelphia, 1983, 378 pp. | MR

[40] Ivaschenko D. S., Chislennye metody resheniya pryamykh i obratnykh zadach dlya uravneniya diffuzii drobnogo poryadka po vremeni, diss. ... kand. fiz.-matem. nauk, Tomsk, 2008, 187 pp. | Zbl

[41] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | Zbl

[42] Kabanikhin S. I., Iskakov K. T., Optimizatsionnye metody resheniya koeffitsientnykh obratnykh zadach, Novosibirskii gosudarstvennyi universitet, Novosibirsk, 2001, 315 pp.

[43] Kalitkin N. N., Chislennye metody. 2-e izd., BKhV, Sankt–Peterburg, 2011, 592 pp.

[44] Arridge S. R., Schweiger, M., “A General Framework for Iterative Reconstruction Algorithms in Optical Tomography, Using a Finite Element Method”, Computational Radiology and Imaging: Therapy and Diagnostics, 13:4 (1902), 40–70 . DOI: 110.1007/978-1-4612-1550-9_4

[45] Levenberg K., “A method for the solution of certain non-linear problems in least squares”, Quarterly of applied mathematics, 2:2 (1944), 164–168 DOI: 10.1090/qam/10666 | DOI | MR | Zbl

[46] Marquardt D. W., “An algorithm for least-squares estimation of nonlinear parameters”, Journal of the society for Industrial and Applied Mathematics, 11:2 (1963), 431–441 DOI: 10.1137/0111030 | DOI | MR | Zbl

[47] More J. J., “The Levenberg-Marquardt algorithm: Implementation and theory”, In: Watson, G.A. (eds) Numerical Analysis. Lecture Notes in Mathematics, 630 (1978), 105–116 DOI: 10.1007/BFb0067700 | Zbl

[48] Borzunov S. V., Kurgalin S. D., Flegel A. V., Praktikum po parallelnomu programmirovaniyu: uchebnoe posobie, BKhV, Sankt-Peterburg, 2017, 236 pp.

[49] Sanders J., Kandrot E., CUDA by Example: An Introduction to General-Purpose GPU Programming, Addison-Wesley Professional, London, 2010, 311 pp.