Mots-clés : oscillogram
@article{VKAM_2024_47_2_a1,
author = {A. I. Salimova and R. I. Parovik},
title = {Mathematical model of {Van} der {Pol-Airy} fractional oscillator},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {21--34},
year = {2024},
volume = {47},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a1/}
}
A. I. Salimova; R. I. Parovik. Mathematical model of Van der Pol-Airy fractional oscillator. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 47 (2024) no. 2, pp. 21-34. http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a1/
[1] Petras I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, Berlin, 2011, 218 pp. | MR | Zbl
[2] Tarasov V. E., “On history of mathematical economics: Application of fractional calculus”, Mathematics, 7 (2019), 509 DOI: 10.3390/math7060509 | DOI
[3] Klafter J., Lim S. C., Metzler R., Fractional dynamics: recent advances, World Scientific, Singapore, 2011, 532 pp. DOI: 10.1142/8087 | MR
[4] Nakhushev A.M. Drobnoe ischislenie i ego primenenie, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[5] Van der Pol B., “LXXXVIII. On “relaxation-oscillations””, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2:11 (1926), 978-992 | DOI
[6] Airy G. B., “On the intensity of light in the neighbourhood of a caustic”, Trans. Camb. Phil. Soc., 1838, no. 6, 379–402
[7] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977, 384 pp. | MR
[8] Volterra V., Functional theory, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp. | MR
[9] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl
[10] Gerasimov A. N., “Obobschenie zakonov lineinogo deformirovaniya i ikh primenenie k zadacham vnutrennego treniya”, AN SSR. Prikladnaya matematika i mekhanika, 44:6 (1948), 62-78
[11] Caputo M., “Linear models of dissipation whose Q is almost frequency independent – II”, Geophysical Journal International, 13 (1967), 529-539 | DOI
[12] Parovik R. I., “Matematicheskoe modelirovanie ereditarnogo ostsillyatora Eiri s treniem”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Matematicheskoe modelirovanie i programmirovanie, 10:1 (2017), 138-148 DOI: 10.14529/mmp170109 | Zbl
[13] Parovik R. I., “Zadacha Koshi dlya obobschennogo uravneniya Eiri”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 16:3 (2014), 64-69
[14] Parovik R. I., “Mathematical Models of Oscillators with Memory”, Oscillators — Recent Developments, InTech, London, 2019, 3-21 DOI: 10.5772/intechopen.81858
[15] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proc. IRE., 50 (2016), 2061-2070 | DOI
[16] Efremidis N. K. et al., “Airy beams and accelerating waves: an overview of recent advances”, Optica, 6:5 (2019), 686-701 pp. | DOI
[17] Parovik R. I., “Matematicheskaya model fraktalnogo ostsillyatora Van-der-Polya”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 17:2 (2015), 57-62
[18] Parovik R. I., “Analiz dobrotnosti vynuzhdennykh kolebanii drobnogo lineinogo ostsillyatora”, Zhurnal tekhnicheskoi fiziki, 90:7 (2020), 1059-1063 DOI: 10.21883/JTF.2020.07.49436.233-19 | DOI
[19] Pskhu A. V. Rekhviashvili S. Sh., “Analiz vynuzhdennykh kolebanii drobnogo ostsillyatora”, Pisma v Zhurnal tekhnicheskoi fiziki, 45:1 (2019), 34-37 DOI: 10.21883/PJTF.2019.01.47154.17540 | DOI
[20] Rekhviashvili S. Sh., Pskhu A. V., “Novyi metod opisaniya zatukhayuschikh kolebanii balki s odnim zadelannym kontsom”, Zhurnal tekhnicheskoi fiziki, 89:9 (2019), 1314-1318 DOI: 10.21883/JTF.2019.09.48055.284-18 | DOI
[21] Parovik R. I., “Amplitudno-chastotnye i fazovo-chastotnye kharakteristiki vynuzhdennykh kolebanii nelineinogo drobnogo ostsillyatora”, Pisma v Zhurnal tekhnicheskoi fiziki, 45:13 (2019), 25-28 DOI: 10.21883/PJTF.2019.13.47953.17811 | DOI
[22] Gao G., Sun Z., Zhang H., “A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications”, Journal of Computational Physics, 259 (2014), 33-50 | DOI | MR | Zbl
[23] Garrappa R., “Numerical solution of fractional differential equations: A survey and a software tutorial”, Mathematics, 6:2 (2018), 016 DOI: 10.3390/math6020016 | DOI
[24] Tavazoei M. S. Haeri M., “Chaotic Attractors in Incommensurate Fractional Order Systems”, Physica D: Nonlinear Phenomena, 237:20 (2008), 2628-2637 | DOI | MR | Zbl
[25] Parovik R. I., Yakovleva T. P., “Construction of maps for dynamic modes and bifurcation diagrams in nonlinear dynamics using the Maple computer mathematics software package”, Journal of Physics: Conference Series, 2022, 52022 DOI: 10.1088/1742-6596/2373/5/052022 | DOI | MR