Mathematical model of Van der Pol-Airy fractional oscillator
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 47 (2024) no. 2, pp. 21-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper proposes a mathematical model of the nonlinear Van der Pol-Airy oscillator taking into account heredity. The nonlinearity of the oscillator is due to the dependence of the friction coefficient on the square of the displacement function, which is typical for the Van der Pol oscillator. Also, the natural frequency of oscillations is a function of time, which increases linearly as it increases. The latter is typical for the Airy oscillator. Heredity effects are introduced into the model equation through fractional derivatives in the Gerasimov-Caputo sense. They indicate that the oscillatory system may have memory effects that manifest themselves depending on its current state from previous ones. For the proposed mathematical model, a numerical algorithm was developed based on an explicit first-order finite-difference scheme. The numerical algorithm was implemented in a computer program in the Maple language, with the help of which the simulation results were visualized. Oscillograms and phase trajectories were constructed for various values of the model parameters. It is shown that a fractional mathematical model can have various oscillatory modes: from self-oscillatory, damped and chaotic. An interpretation of the simulation results is given
Keywords: mathematical model, Gerasimov-Caputo fractional derivative, phase trajectory, limit cycle, numerical algorithm.
Mots-clés : oscillogram
@article{VKAM_2024_47_2_a1,
     author = {A. I. Salimova and R. I. Parovik},
     title = {Mathematical model of {Van} der {Pol-Airy} fractional oscillator},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {21--34},
     year = {2024},
     volume = {47},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a1/}
}
TY  - JOUR
AU  - A. I. Salimova
AU  - R. I. Parovik
TI  - Mathematical model of Van der Pol-Airy fractional oscillator
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 21
EP  - 34
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a1/
LA  - ru
ID  - VKAM_2024_47_2_a1
ER  - 
%0 Journal Article
%A A. I. Salimova
%A R. I. Parovik
%T Mathematical model of Van der Pol-Airy fractional oscillator
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 21-34
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a1/
%G ru
%F VKAM_2024_47_2_a1
A. I. Salimova; R. I. Parovik. Mathematical model of Van der Pol-Airy fractional oscillator. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 47 (2024) no. 2, pp. 21-34. http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a1/

[1] Petras I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, Berlin, 2011, 218 pp. | MR | Zbl

[2] Tarasov V. E., “On history of mathematical economics: Application of fractional calculus”, Mathematics, 7 (2019), 509 DOI: 10.3390/math7060509 | DOI

[3] Klafter J., Lim S. C., Metzler R., Fractional dynamics: recent advances, World Scientific, Singapore, 2011, 532 pp. DOI: 10.1142/8087 | MR

[4] Nakhushev A.M. Drobnoe ischislenie i ego primenenie, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[5] Van der Pol B., “LXXXVIII. On “relaxation-oscillations””, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2:11 (1926), 978-992 | DOI

[6] Airy G. B., “On the intensity of light in the neighbourhood of a caustic”, Trans. Camb. Phil. Soc., 1838, no. 6, 379–402

[7] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977, 384 pp. | MR

[8] Volterra V., Functional theory, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp. | MR

[9] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[10] Gerasimov A. N., “Obobschenie zakonov lineinogo deformirovaniya i ikh primenenie k zadacham vnutrennego treniya”, AN SSR. Prikladnaya matematika i mekhanika, 44:6 (1948), 62-78

[11] Caputo M., “Linear models of dissipation whose Q is almost frequency independent – II”, Geophysical Journal International, 13 (1967), 529-539 | DOI

[12] Parovik R. I., “Matematicheskoe modelirovanie ereditarnogo ostsillyatora Eiri s treniem”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Matematicheskoe modelirovanie i programmirovanie, 10:1 (2017), 138-148 DOI: 10.14529/mmp170109 | Zbl

[13] Parovik R. I., “Zadacha Koshi dlya obobschennogo uravneniya Eiri”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 16:3 (2014), 64-69

[14] Parovik R. I., “Mathematical Models of Oscillators with Memory”, Oscillators — Recent Developments, InTech, London, 2019, 3-21 DOI: 10.5772/intechopen.81858

[15] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proc. IRE., 50 (2016), 2061-2070 | DOI

[16] Efremidis N. K. et al., “Airy beams and accelerating waves: an overview of recent advances”, Optica, 6:5 (2019), 686-701 pp. | DOI

[17] Parovik R. I., “Matematicheskaya model fraktalnogo ostsillyatora Van-der-Polya”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 17:2 (2015), 57-62

[18] Parovik R. I., “Analiz dobrotnosti vynuzhdennykh kolebanii drobnogo lineinogo ostsillyatora”, Zhurnal tekhnicheskoi fiziki, 90:7 (2020), 1059-1063 DOI: 10.21883/JTF.2020.07.49436.233-19 | DOI

[19] Pskhu A. V. Rekhviashvili S. Sh., “Analiz vynuzhdennykh kolebanii drobnogo ostsillyatora”, Pisma v Zhurnal tekhnicheskoi fiziki, 45:1 (2019), 34-37 DOI: 10.21883/PJTF.2019.01.47154.17540 | DOI

[20] Rekhviashvili S. Sh., Pskhu A. V., “Novyi metod opisaniya zatukhayuschikh kolebanii balki s odnim zadelannym kontsom”, Zhurnal tekhnicheskoi fiziki, 89:9 (2019), 1314-1318 DOI: 10.21883/JTF.2019.09.48055.284-18 | DOI

[21] Parovik R. I., “Amplitudno-chastotnye i fazovo-chastotnye kharakteristiki vynuzhdennykh kolebanii nelineinogo drobnogo ostsillyatora”, Pisma v Zhurnal tekhnicheskoi fiziki, 45:13 (2019), 25-28 DOI: 10.21883/PJTF.2019.13.47953.17811 | DOI

[22] Gao G., Sun Z., Zhang H., “A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications”, Journal of Computational Physics, 259 (2014), 33-50 | DOI | MR | Zbl

[23] Garrappa R., “Numerical solution of fractional differential equations: A survey and a software tutorial”, Mathematics, 6:2 (2018), 016 DOI: 10.3390/math6020016 | DOI

[24] Tavazoei M. S. Haeri M., “Chaotic Attractors in Incommensurate Fractional Order Systems”, Physica D: Nonlinear Phenomena, 237:20 (2008), 2628-2637 | DOI | MR | Zbl

[25] Parovik R. I., Yakovleva T. P., “Construction of maps for dynamic modes and bifurcation diagrams in nonlinear dynamics using the Maple computer mathematics software package”, Journal of Physics: Conference Series, 2022, 52022 DOI: 10.1088/1742-6596/2373/5/052022 | DOI | MR