Mots-clés : interpolation.
@article{VKAM_2024_46_1_a6,
author = {A. R. Hayotov and N. N. Doniyorov},
title = {Construction of basis functions for finite element methods in a {Hilbert} space},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {118--133},
year = {2024},
volume = {46},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a6/}
}
TY - JOUR AU - A. R. Hayotov AU - N. N. Doniyorov TI - Construction of basis functions for finite element methods in a Hilbert space JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2024 SP - 118 EP - 133 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a6/ LA - en ID - VKAM_2024_46_1_a6 ER -
A. R. Hayotov; N. N. Doniyorov. Construction of basis functions for finite element methods in a Hilbert space. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 46 (2024) no. 1, pp. 118-133. http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a6/
[1] Turner M. J., Clough R. W., Martin N. S., Topp L. J., “Sliffness and Deflection Analysis of Complex Structures”, Aeronaut. Sci., 23 (1956), 805—824 | DOI
[2] Melosh R. J., “Basis for Derivation of Matrices for the Direct Stiffness Method”, Am. Inst. for Aeronautics and Astronautics. J., 1965, 1631—1637
[3] Szabo B. A., Lee G. C., “Derivation of Stiffness Matrices for Problems in Plane Elasticity by Galerkin’s Method”, Intern. J. of Numerical Methods in Engineering, 1969, no. 1, 301-310 | DOI | Zbl
[4] Zienkiewicz O. C., Basis for Derivation of Matrices for the Direct Stiffness Method, McGraw-Hill, London, 1971, 521 pp.
[5] Mitchell E., Waite R., Finite element method for partial differential equation, Mir, Moscow, 1981, 216 pp. (In Russian) | MR
[6] Segerlind L., Application of the finite element method, Mir, Moscow, 1979, 392 pp. (In Russian)
[7] Dautov R. Z., Karchevsky M. M., Introduction to the theory of the finite element method, Kazan Federal University, Kazan, 2011, 239 pp. (In Russian)
[8] Khayotov A. R., “Discrete analogues of some differential operators”, Uzbek mathematical journal, 2012, no. 1, 151-155 (In Russian) | MR
[9] Zhilin Li, Zhonghua Qiao, Tao Tang., Numerical Solution of Differential Equations, Cambridge University Press, United Kingdom, 2018, 293 pp. | MR | Zbl
[10] Burden R. L, Douglas F. J., Numerical Analysis, Cengage Learning, United States of America, 2016, 900 pp.
[11] Hayotov A. R., Milovanovi$\acute{c}$ G. V., Shadimetov Kh. M., “Optimal quadratures in the sense of Sard in a Hilbert space”, Applied Mathematics and Computation, 2015, no. 259, 637-653 | DOI | MR | Zbl
[12] Sobolev S. L., “On Interpolation of Functions of $n$ Variables, Selected works of S.L. Sobolev”, Mathematical Physics, Computational Mathematics, and Cubature Formulas, 1 (2006), 451-456 | MR
[13] Babaev S. S., Hayotov A. R., “Optimal interpolation formulas in $W_2^{(m, m-1)}$ space”, Calcolo, 56:23 (2019), 1-25 | MR
[14] Shadimetov Kh. M., Hayotov A. R., Nuraliev F. A., “Construction of optimal interpolation formulas in the Sobolev space”, Journal of Mathematical Sciences, 264:6 (2022), 768-781 | DOI | MR
[15] Boltaev A. K., “On the optimal interpolation formula on classes of differentiable functions”, Problems of Computational and Applied Mathematics, 2021, no. 4(34), 96-105 | MR
[16] Shadimetov Kh. M., Boltaev A. K., Parovik R. I., “Construction of optimal interpolation formula exact for trigonometric functions by Sobolev’s method”, Vestnik KRAUNC. Fiz-Mat. nauki., 38:1 (2022), 131-146 | MR | Zbl
[17] Yong-Wei W., Guo-Zhao W., “An orthogonal basis for non-uniform algebraic-trigonometric spline space.”, Applied Mathematics Journal of Chinese University, 29:3 (2014), 273-282 | DOI | MR | Zbl
[18] Majed A. et al., “Geometric Modeling Using New Cubic Trigonometric B-Spline Functions with Shape Parametr”, Mathematics, 2102:8 (2020), 1-25 | MR
[19] Lanlan Yan, “Cubic Trigonometric Nonuniform Spline Curves and Surfaces”, Mathematical Problems in Engineering, Article ID 7067408. (2016), 9 | MR
[20] Duan Xiao-Juan, Wang Guo-Zhao., “NUAT T-splines of odd bi-degree and local refinement.”, Applied Mathematics Journal of Chinese University, 29:4 (2014), 410-421 | DOI | MR | Zbl
[21] Emre Kirli, “A novel B-spline collocation method for Hyperbolic Telegraph equation.”, AIMS Mathematics, 8:5 (2023), 11015-11036 | DOI | MR
[22] Shadimetov Kh. M., Hayotov A. R., Optimal approximation of error functionals of quadrature and interpolation formulas in spaces of differentiable functions, Muhr press, Tashkent, 2022., 246 pp. (In Russian)
[23] Hayotov A. R., “Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$.”, Journal of Siberian Federal University. Mathematics and Physics, 2018, no. 11, 383–396 | MR
[24] Babaev S., “On an optimal interpolation formula in $K_2(P_2)$ space”, Uzbek Mathematical Journal, 2019, no. 1, 27-41 | MR | Zbl
[25] Babaev S., Davronov J., Abdullaev A., and Polvonov S., “Optimal interpolation formulas exact for trigonometric functions.”, AIP Conference Proceedings, 2023, no. 2781
[26] Sobolev S. L., Introduction to the theory of cubature formulas, Moscow, Nauka, 1974., 805 pp. (In Russian) | MR
[27] Hayotov A., Doniyorov N., “Basis functions for finite element methods.”, Bull. Inst. Math., 6:5 (2023), 31-44