Construction of basis functions for finite element methods in a Hilbert space
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 46 (2024) no. 1, pp. 118-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present work is devoted to construction of the optimal interpolation formula exact for trigonometric functions sin($\omega$x) and cos($\omega$x). Here the analytical representations of the coefficients of the optimal interpolation formula in a certain Hilbert space are obtained using the discrete analogue of the differential operator. Taking the coefficients of the optimal interpolation formula as basis functions, in the finite element methods the boundary value problems for ordinary differential equations of the second order are approximately solved. In particular, it is shown that the coefficients of the optimal interpolation formula can serve as a set of effective basis functions. Approximate solutions of the differential equations are compared using the constructed basis functions and known basis functions. In particular, we have obtained numerical results for the cases when the numbers of basis functions are 6 and 11. In both cases, we have got that the accuracy of the approximate solution to the boundary value problems for second-order ordinary differential equations found using our basis functions is higher than the accuracy of the approximate solution found using known basis functions. It is proven that the accuracy of the approximate solution increases with increasing the number of basis functions.
Keywords: basis functions, ordinary differential equation, boundary value problem, finite element method
Mots-clés : interpolation.
@article{VKAM_2024_46_1_a6,
     author = {A. R. Hayotov and N. N. Doniyorov},
     title = {Construction of basis functions for finite element methods in a {Hilbert} space},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {118--133},
     year = {2024},
     volume = {46},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a6/}
}
TY  - JOUR
AU  - A. R. Hayotov
AU  - N. N. Doniyorov
TI  - Construction of basis functions for finite element methods in a Hilbert space
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 118
EP  - 133
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a6/
LA  - en
ID  - VKAM_2024_46_1_a6
ER  - 
%0 Journal Article
%A A. R. Hayotov
%A N. N. Doniyorov
%T Construction of basis functions for finite element methods in a Hilbert space
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 118-133
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a6/
%G en
%F VKAM_2024_46_1_a6
A. R. Hayotov; N. N. Doniyorov. Construction of basis functions for finite element methods in a Hilbert space. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 46 (2024) no. 1, pp. 118-133. http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a6/

[1] Turner M. J., Clough R. W., Martin N. S., Topp L. J., “Sliffness and Deflection Analysis of Complex Structures”, Aeronaut. Sci., 23 (1956), 805—824 | DOI

[2] Melosh R. J., “Basis for Derivation of Matrices for the Direct Stiffness Method”, Am. Inst. for Aeronautics and Astronautics. J., 1965, 1631—1637

[3] Szabo B. A., Lee G. C., “Derivation of Stiffness Matrices for Problems in Plane Elasticity by Galerkin’s Method”, Intern. J. of Numerical Methods in Engineering, 1969, no. 1, 301-310 | DOI | Zbl

[4] Zienkiewicz O. C., Basis for Derivation of Matrices for the Direct Stiffness Method, McGraw-Hill, London, 1971, 521 pp.

[5] Mitchell E., Waite R., Finite element method for partial differential equation, Mir, Moscow, 1981, 216 pp. (In Russian) | MR

[6] Segerlind L., Application of the finite element method, Mir, Moscow, 1979, 392 pp. (In Russian)

[7] Dautov R. Z., Karchevsky M. M., Introduction to the theory of the finite element method, Kazan Federal University, Kazan, 2011, 239 pp. (In Russian)

[8] Khayotov A. R., “Discrete analogues of some differential operators”, Uzbek mathematical journal, 2012, no. 1, 151-155 (In Russian) | MR

[9] Zhilin Li, Zhonghua Qiao, Tao Tang., Numerical Solution of Differential Equations, Cambridge University Press, United Kingdom, 2018, 293 pp. | MR | Zbl

[10] Burden R. L, Douglas F. J., Numerical Analysis, Cengage Learning, United States of America, 2016, 900 pp.

[11] Hayotov A. R., Milovanovi$\acute{c}$ G. V., Shadimetov Kh. M., “Optimal quadratures in the sense of Sard in a Hilbert space”, Applied Mathematics and Computation, 2015, no. 259, 637-653 | DOI | MR | Zbl

[12] Sobolev S. L., “On Interpolation of Functions of $n$ Variables, Selected works of S.L. Sobolev”, Mathematical Physics, Computational Mathematics, and Cubature Formulas, 1 (2006), 451-456 | MR

[13] Babaev S. S., Hayotov A. R., “Optimal interpolation formulas in $W_2^{(m, m-1)}$ space”, Calcolo, 56:23 (2019), 1-25 | MR

[14] Shadimetov Kh. M., Hayotov A. R., Nuraliev F. A., “Construction of optimal interpolation formulas in the Sobolev space”, Journal of Mathematical Sciences, 264:6 (2022), 768-781 | DOI | MR

[15] Boltaev A. K., “On the optimal interpolation formula on classes of differentiable functions”, Problems of Computational and Applied Mathematics, 2021, no. 4(34), 96-105 | MR

[16] Shadimetov Kh. M., Boltaev A. K., Parovik R. I., “Construction of optimal interpolation formula exact for trigonometric functions by Sobolev’s method”, Vestnik KRAUNC. Fiz-Mat. nauki., 38:1 (2022), 131-146 | MR | Zbl

[17] Yong-Wei W., Guo-Zhao W., “An orthogonal basis for non-uniform algebraic-trigonometric spline space.”, Applied Mathematics Journal of Chinese University, 29:3 (2014), 273-282 | DOI | MR | Zbl

[18] Majed A. et al., “Geometric Modeling Using New Cubic Trigonometric B-Spline Functions with Shape Parametr”, Mathematics, 2102:8 (2020), 1-25 | MR

[19] Lanlan Yan, “Cubic Trigonometric Nonuniform Spline Curves and Surfaces”, Mathematical Problems in Engineering, Article ID 7067408. (2016), 9 | MR

[20] Duan Xiao-Juan, Wang Guo-Zhao., “NUAT T-splines of odd bi-degree and local refinement.”, Applied Mathematics Journal of Chinese University, 29:4 (2014), 410-421 | DOI | MR | Zbl

[21] Emre Kirli, “A novel B-spline collocation method for Hyperbolic Telegraph equation.”, AIMS Mathematics, 8:5 (2023), 11015-11036 | DOI | MR

[22] Shadimetov Kh. M., Hayotov A. R., Optimal approximation of error functionals of quadrature and interpolation formulas in spaces of differentiable functions, Muhr press, Tashkent, 2022., 246 pp. (In Russian)

[23] Hayotov A. R., “Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$.”, Journal of Siberian Federal University. Mathematics and Physics, 2018, no. 11, 383–396 | MR

[24] Babaev S., “On an optimal interpolation formula in $K_2(P_2)$ space”, Uzbek Mathematical Journal, 2019, no. 1, 27-41 | MR | Zbl

[25] Babaev S., Davronov J., Abdullaev A., and Polvonov S., “Optimal interpolation formulas exact for trigonometric functions.”, AIP Conference Proceedings, 2023, no. 2781

[26] Sobolev S. L., Introduction to the theory of cubature formulas, Moscow, Nauka, 1974., 805 pp. (In Russian) | MR

[27] Hayotov A., Doniyorov N., “Basis functions for finite element methods.”, Bull. Inst. Math., 6:5 (2023), 31-44