Application of high-performance computing to solve the cauchy problem with the fractional Riccati equation using an nonlocal implicit finite-difference scheme
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 46 (2024) no. 1, pp. 103-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents a study of the computational efficiency of a parallel version of a numerical algorithm for solving the Riccati equation with a fractional variable order derivative of the Gerasimov-Caputo type. The numerical algorithm is a nonlocal implicit finite-difference scheme, which reduces to a system of nonlinear algebraic equations and is solved using a modified Newton method. The nonlocality of the numerical scheme creates a high computational load on computing resources, which creates the need to implement efficient parallel algorithms for solving them. The numerical algorithm studied for efficiency is implemented in the C language due to its versatility when working with memory. Parallelization was carried out using OpenMP technology. A series of computational experiments are being carried out on the NVIDIA DGX STATION computing server (Institute of Mathematics named after V.I. Romanovsky, Tashkent, Uzbekistan) and the HP Pavilion Gaming Laptop Z270X, where the Cauchy problem for the fractional Riccati equation with non-constant coefficients was solved. Based on the average computation time, the speedup, efficiency and cost of the algorithm are calculated. From the data analysis it is clear that the OpenMP parallel software implementation of the non-local implicit finite-difference scheme shows an acceleration of 9-12 times, depending on the number of CPU cores involved.
Keywords: parallel computing, OpenMP, implicit finite difference schemes, Newton's method, fractional derivatives, memory effect, non-locality, non-linearity.
@article{VKAM_2024_46_1_a5,
     author = {D. A. Tvyordyj and R. I. Parovik},
     title = {Application of high-performance computing to solve the cauchy problem with the fractional {Riccati} equation using an nonlocal implicit finite-difference scheme},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {103--117},
     year = {2024},
     volume = {46},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a5/}
}
TY  - JOUR
AU  - D. A. Tvyordyj
AU  - R. I. Parovik
TI  - Application of high-performance computing to solve the cauchy problem with the fractional Riccati equation using an nonlocal implicit finite-difference scheme
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 103
EP  - 117
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a5/
LA  - ru
ID  - VKAM_2024_46_1_a5
ER  - 
%0 Journal Article
%A D. A. Tvyordyj
%A R. I. Parovik
%T Application of high-performance computing to solve the cauchy problem with the fractional Riccati equation using an nonlocal implicit finite-difference scheme
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 103-117
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a5/
%G ru
%F VKAM_2024_46_1_a5
D. A. Tvyordyj; R. I. Parovik. Application of high-performance computing to solve the cauchy problem with the fractional Riccati equation using an nonlocal implicit finite-difference scheme. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 46 (2024) no. 1, pp. 103-117. http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a5/

[1] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory, Springer, Berlin, 2013, 373 pp. | MR

[2] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[3] Parovik R. I., “Mathematical models of oscillators with memory”, Oscillators-Recent Developments, 2019, 3–21 DOI: 10.5772/intechopen.81858

[4] Volterra V., “Sur les équations intégro-différentielles et leurs applications”, Acta Mathematica, 35:1 (1912), 295–356 DOI: 10.1007/BF02418820 | DOI | MR

[5] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: a review”, Proceedings of the Royal Society A, 476:2234 (2020), 20190498 DOI: 10.1098/rspa.2019.0498 | DOI | MR

[6] Ortigueira M. D., Valerio D., Machado J. T., “Variable order fractional systems”, Communications in Nonlinear Science and Numerical Simulation, 71 (2019), 231–243 DOI: 10.1016/j.cnsns.2018.12.003 | DOI | MR | Zbl

[7] Petras I., Fractional-order nonlinear systems: modeling, analysis and simulation, Beijing and Springer-Verlag, Berlin, Germany, 2011, 218 pp. | Zbl

[8] Sun H., Chang A., Zhang Y., Chen W., “A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications”, Fractional Calculus and Applied Analysis, 22:1 (2019), 27–59 DOI: 10.1515/fca-2019-0003 | DOI | MR | Zbl

[9] Rossikhin Y. A., Shitikova M. V., “Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results”, Applied Mechanics Reviews, 63:1 (2010), 1–5 DOI: 10.1115/1.4000563 | DOI

[10] Mainardi F., Fractional Calculus and Waves in Linear Viscoelastisity: An Introduction to Mathematical Models. 2nd edition, World Scientific Publishing Company, Singapore, 2022, 625 pp. | MR

[11] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6:1:23 (2022), 1–27 DOI: 10.3390/fractalfract6010023

[12] Volterra V., Theory of functionals and of integral and integro-differential equations, Dover publications, New York, 1959, 226 pp. | MR | Zbl

[13] Tverdyi D. A., Parovik R. I., Hayotov A. R., Boltaev A. K., “Parallelization of a Numerical Algorithm for Solving the Cauchy Problem for a Nonlinear Differential Equation of Fractional Variable Order Using OpenMP Technology”, Bulletin KRASEC. Physical and Mathematical Sciences, 43:2 (2023), 87–110 DOI: 10.26117/2079-6641-2023-43-2-87-11 | MR

[14] Tverdyi D. A., Parovik R. I., “Hybrid GPU-CPU efficient implementation of a parallel numerical algorithm for solving the Cauchy problem for a nonlinear differential Riccati equation of fractional variable order”, Mathematics, 11:15:3358 (2023), 1–21 DOI: 10.3390/math11153358 | DOI

[15] Borzunov S. V., Kurgalin S. D., Flegel A. V., Praktikum po parallelnomu programmirovaniyu: uchebnoe posobie, BKhV, Sankt-Peterburg, 2017, 236 pp.

[16] Kalitkin N. N., Chislennye metody. 2-e izd., BKhV, Sankt–Peterburg, 2011, 592 pp.

[17] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[18] Parovik R. I. Tverdyi D. A., “Some Aspects of Numerical Analysis for a Model Nonlinear Fractional Variable Order Equation”, Mathematical and Computational Applications, 26:3 (2021), 55 DOI: 10.3390/mca26030055 | DOI | MR

[19] Tverdyi D. A., Parovik R. I., “Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect”, Fractal and Fractional, 6:3:163 (2022), 1–35 DOI: 10.3390/fractalfract6030163 | DOI

[20] Parovik, R. I., “On a Finite-Difference Scheme for an Hereditary Oscillatory Equation”, Journal of Mathematical Sciences, 253:4 (2021), 547-557 DOI: 10.1007/s10958-021-05252-2 | DOI | Zbl

[21] Gerasimov A. N., “Generalization of linear deformation laws and their application to internal friction problems”, Applied Mathematics and Mechanics, 12 (1948), 529–539 | MR

[22] Caputo M., “Linear models of dissipation whose Q is almost frequency independent – II”, Geophysical Journal International, 13:5 (1967), 529–539 DOI: 10.1111/j.1365-246X.1967.tb02303.x | DOI

[23] Jeng S., Kilicman A., “Fractional Riccati Equation and Its Applications to Rough Heston Model Using Numerical Methods”, Symmetry, 12 (2020), 1–20 DOI: 10.3390/sym12060959

[24] Tverdyi D. A., Parovik R. I., Makarov E. O., Firstov P. P., “Research of the process of radon accumulation in the accumulating chamber taking into account the nonlinearity of its entrance”, E3S Web Conference, 196:02027 (2020), 1–6 DOI: 10.1051/e3sconf/202019602027

[25] Tverdyi D. A., Makarov E. O., Parovik R. I., “Hereditary Mathematical Model of the Dynamics of Radon Accumulation in the Accumulation Chamber”, Mathematics, 11:4:850 (2023), 1–20 DOI: 10.3390/math11040850 | DOI

[26] Brent R. P., “The parallel evaluation of general arithmetic expressions”, Journal of the Association for Computing Machinery, 21:2 (1974), 201–206 DOI: 10.1145/321812.321815 | DOI | MR | Zbl

[27] Corman T. H., Leiserson C. E., Rivet R. L., Stein C., Introduction to Algorithms, 3rd Edition, The MIT Press, Cambridge, 2009, 1292 pp. | MR

[28] Shao J., Mathematical Statistics. 2-ed, Springer, New York, 2003, 592 pp. | MR