Keywords: quasi-stationary regime, quasi-homogeneous regime, seismic process, Gutenberg-Rihter law, first-passage time, Mittag-Leffler's function, approximation, statistical model, fractional model.
@article{VKAM_2024_46_1_a4,
author = {O. V. Sheremetyeva and B. M. Shevtsov},
title = {Application of the hereditarian criticality model to the study of the characteristics of the seismic process of the {Kuril-Kamchatka} island {Arc} subduction zone},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {89--101},
year = {2024},
volume = {46},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a4/}
}
TY - JOUR AU - O. V. Sheremetyeva AU - B. M. Shevtsov TI - Application of the hereditarian criticality model to the study of the characteristics of the seismic process of the Kuril-Kamchatka island Arc subduction zone JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2024 SP - 89 EP - 101 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a4/ LA - ru ID - VKAM_2024_46_1_a4 ER -
%0 Journal Article %A O. V. Sheremetyeva %A B. M. Shevtsov %T Application of the hereditarian criticality model to the study of the characteristics of the seismic process of the Kuril-Kamchatka island Arc subduction zone %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2024 %P 89-101 %V 46 %N 1 %U http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a4/ %G ru %F VKAM_2024_46_1_a4
O. V. Sheremetyeva; B. M. Shevtsov. Application of the hereditarian criticality model to the study of the characteristics of the seismic process of the Kuril-Kamchatka island Arc subduction zone. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 46 (2024) no. 1, pp. 89-101. http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a4/
[1] Shevtsov B., Sheremetyeva O., “Fractional Criticality Theory and Its Application in Seismology”, Fractal Fract., 7:890 (2023), 1–12 DOI: 10.3390/fractalfract7120890
[2] Shevtsov B., Sheremetyeva O., “Power-Law Compound and Fractional Poisson Process in the Theory of Anomalous Phenomena”, Solar-Terrestrial Relations and Physics of Earthquake Precursors. STRPEP 2023, Springer Proceedings in Earth and Environmental Sciences, Springer, Cham, 2023, 266–275 DOI: 10.1007/978-3-031-50248-4_27 | DOI
[3] Janossy L., Renyi A., Aczel J., “On composed Poisson distributions”, I. Acta Math. Acad. Sci. Hungar., 1950, no. 1, 209–224 | DOI | MR | Zbl
[4] Adelson R. M., “Compound Poisson distributions”, Oper. Res. Quart., 17 (1966), 73–75 | DOI
[5] Antonio Di Crescenzo, Barbara Martinucci, Alessandra Meoli, “A fractional counting process and its connection with the Poisson process”, ALEA, Lat. Am. J. Probab. Math. Stat., 2016, no. 13, 291–307 DOI: 10.30757/ALEA.v13-12 | MR | Zbl
[6] Beghin L., Macci C., “Multivariate fractional Poisson processes and compound sums”, Adv. in Appl. Probab., 48:3 author (2016) DOI: 10.1017/apr.2016.23 | DOI | MR | Zbl
[7] Kataria K. K., Khandakar M., “Convoluted Fractional Poisson Process”, ALEA, Lat. Am. J. Probab. Math. Stat., 2021, no. 18, 1241–1265 DOI: 10.30757/ALEA.v18-46 | DOI | MR | Zbl
[8] Khandakar M., Kataria K. K., “Some Compound Fractional Poisson Processes”, Fractal Fract., 7:15 (2023) DOI: 10.3390/fractalfract7010015
[9] Gutenberg B., Richter C. F., “Frequency of Earthquakes in California”, Bulletin of the Seismological Society of America, 34 (1944), 185–188 | DOI
[10] Kanamori Hiroo, “The Energy Release in Great Earthquakes”, J. of Geophysical Research, 82:20 (1977), 2981–2987 | DOI
[11] The Geophysical Service of the Russian Academy of Sciences. Available online: http://www.gsras.ru/new/eng/catalog/
[12] Gmurman N. Sh., Teoriya veroyatnostei i matematicheskaya statistika: Ucheb. posobie dlya vuzov. – 9-e izd., ster, Vyssh. shk., M., 2003, 479 pp. | MR
[13] Kremer N. Sh., Teoriya veroyatnostei i matematicheskaya statistika: Uchebnik dlya vuzov. – 2-e izd., pererab. i dop., YuNITI-DANA, M., 2004, 573 pp.
[14] Shevtsov B., Sheremetyeva O., “Fractional models of seismoacoustic and electromagnetic activity”, E3S Web Conf., 20:02013 (2017), 1–8 DOI: 10.1051/e3sconf/20172002013
[15] Sheremetyeva O., Shevtsov B., “Fractional Model of the Deformation Process”, Fractal Fract., 6:372 (2022), 1–12 DOI: 10.3390/fractalfract6070372