Mathematical model of a fractional nonlinear Mathieu oscillator
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 46 (2024) no. 1, pp. 70-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work studies the fractional nonlinear Mathieu oscillator using numerical analysis methods in order to establish its various oscillatory modes. Mathieu's fractional nonlinear oscillator is an ordinary nonlinear differential equation with fractional derivatives in the Gerasimov-Caputo sense and local initial conditions (Cauchy problem). Gerasimov-Caputo fractional derivatives characterize the presence of the heredity effect in an oscillatory system. In such a system, its current state depends on the previous history. To study the Cauchy problem, a numerical method from the predictor-corrector family was used – the Adams-Bashforth-Moulton method, the algorithm of which was implemented in the Matlab computer mathematics system. Using a numerical algorithm, oscillograms and phase trajectories were constructed for various values of the parameters of the Mathieu fractional nonlinear oscillator. It is shown that in the absence of an external periodic influence, self-oscillations can arise in the oscillatory system under consideration, which are characterized by limit cycles on the phase trajectory. A study of limit cycles was carried out using computer simulation. It has been shown that aperiodic regimes can also arise, i.e. modes that are not oscillatory. Therefore, the orders of fractional derivatives can be influenced by the oscillatory mode of a nonlinear fractional Mathieu oscillator: from oscillations with a constant amplitude to damped ones and disappearing completely.
Keywords: model, nonlinear Mathieu oscillator, fractional order derivative, numerical modeling, oscillograms, phase trajectories.
@article{VKAM_2024_46_1_a3,
     author = {A. Zh. Otenova and R. I. Parovik},
     title = {Mathematical model of a fractional nonlinear {Mathieu} oscillator},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {70--88},
     year = {2024},
     volume = {46},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a3/}
}
TY  - JOUR
AU  - A. Zh. Otenova
AU  - R. I. Parovik
TI  - Mathematical model of a fractional nonlinear Mathieu oscillator
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 70
EP  - 88
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a3/
LA  - ru
ID  - VKAM_2024_46_1_a3
ER  - 
%0 Journal Article
%A A. Zh. Otenova
%A R. I. Parovik
%T Mathematical model of a fractional nonlinear Mathieu oscillator
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 70-88
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a3/
%G ru
%F VKAM_2024_46_1_a3
A. Zh. Otenova; R. I. Parovik. Mathematical model of a fractional nonlinear Mathieu oscillator. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 46 (2024) no. 1, pp. 70-88. http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a3/

[1] Petras I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, Berlin, 2011, 218 pp. DOI: 10.1007/978-3-642-18101-6 | MR | Zbl

[2] Klafter J., Lim S. C., Metzler R., Fractional dynamics: recent advances, World Scientific, Singapore, 2011, 532 pp. DOI: 10.1142/8087 | MR

[3] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977, 384 pp. | MR

[4] Volterra V., Functional theory, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp. | MR

[5] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[6] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[7] Parovik R. I., “Mathematical Models of Oscillators with Memory”, Oscillators - Recent Developments, InTech, London, 2019, 3-21 DOI: 10.5772/intechopen.81858

[8] Parovik R. I., Khaoticheskie i regulyarnye rezhimy drobnykh ostsillyatorov, KAMChATPRESS, Petropavlovsk-Kamchatskii, 2019, 132 pp.

[9] Mathieu E., “Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique”, Journal de mathématiques pures et appliquées, 13 (1868), 137-203

[10] Holland R., Cable V. P., “Mathieu functions and their applications to scattering by a coated strip”, IEEE transactions on electromagnetic compatibility, 34:1 (1992), 9-16 . DOI: 10.1109/15.121661 | DOI

[11] Yamamoto T., Koshino K., Nakamura Y., “Parametric amplifier and oscillator based on Josephson junction circuitry”, Principles and Methods of Quantum Information Technologies, Lecture Notes in Physics, v. 911, Springer, Germany, 2016, 495-513 DOI: 10.1007/978-4-431-55756-2_23 | DOI

[12] Löcherer K. H., Brandt C. D., Parametric electronics: an introduction, v. 6, Springer, 1982, 342 pp.

[13] Vainio M., Halonen L., “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy”, Physical Chemistry Chemical Physics, 18:6 (2016), 4266-4294 DOI: 10.1117/12.308105 | DOI

[14] Boston J. R., “Response of a nonlinear form of the Mathieu equation”, The Journal of the Acoustical Society of America, 49:1B (1971), 299-305 DOI: 10.1121/1.1912330 | DOI

[15] Kidachi H., Onogi H., “Note on the stability of the nonlinear Mathieu equation”, Progress of theoretical physics, 98:4 (1997), 755-773 DOI: 10.1143/PTP.98.755 | DOI | MR

[16] El-Dib Y. O., “Nonlinear Mathieu equation and coupled resonance mechanism”, Chaos, Solitons Fractals, 12:4 (2001), 705-720 DOI: 0.1016/S0960-0779(00)00011-4 | DOI | MR | Zbl

[17] Bartuccelli M. V. et al., “Selection rules for periodic orbits and scaling laws for a driven damped quartic oscillator”, Nonlinear Analysis: Real World Applications, 9:5 (2008), 1966-1988 DOI: 10.1016/j.nonrwa.2007.06.007 | DOI | MR | Zbl

[18] Parovik R. I., “Zadacha Koshi dlya nelokalnogo uravneniya Mate”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 13:2 (2011), 90-98

[19] Parovik R. I., “Diagrammy Stretta-Ainsa dlya obobschennogo uravneniya Mate”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2012, no. 1(4), 24-30 | Zbl

[20] Parovik R. I., “Fractal parametric oscillator as a model of a nonlinear oscillation system in natural mediums”, International Journal of Communications, Network and System Sciences, 6:3 (2013), 134-138 DOI: 10.4236/ijcns.2013.63016 | DOI

[21] Zhang W., Baskaran R., Turner K., “Tuning the dynamic behavior of parametric resonance in a micromechanical oscillator”, Applied physics letters, 82:1 (2003), 130-132 DOI: 10.1063/1.1534615 | DOI

[22] Sanin A. L., Smirnovskii A. A., “Kvantovyi ostsillyator Mate s kubicheskoi siloi, treniem i shumom”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 24:3 (2016), 54-67 DOI: 10.18500/0869-6632-2016-24-3-54-67

[23] Gerasimov A.N., “Obobschenie zakonov lineinogo deformirovaniya i ikh primenenie k zadacham vnutrennego treniya”, AN SSR. Prikladnaya matematika i mekhanika, 44:6 (1948), 62-78

[24] Caputo M., “Linear models of dissipation whose Q is almost frequency independent - II”, Geophysical Journal International, 13 (1967), 529-539 | DOI

[25] Pskhu A. V. Rekhviashvili S.Sh., “Analiz vynuzhdennykh kolebanii drobnogo ostsillyatora”, Pisma v Zhurnal tekhnicheskoi fiziki, 45:1 (2019), 34-37 DOI: 10.21883/PJTF.2019.01.47154.17540 | DOI

[26] Parovik R. I., “Amplitudno-chastotnye i fazovo-chastotnye kharakteristiki vynuzhdennykh kolebanii nelineinogo drobnogo ostsillyatora”, Pisma v Zhurnal tekhnicheskoi fiziki, 45:13 (2019), 25-28 DOI:10.21883/PJTF.2019.13.47953.17811 | DOI

[27] Parovik R.I., “Existence and uniqueness of the Cauchy problem for a fractal nonlinear oscillator equation”, Uz. Math. J., 2017, no. 4, 110-118 | MR

[28] Otenova A. Zh., Parovik R. I., “Mathematical modeling of the non-linear fractional oscillator Mathieu”, Actual Problems of Applied Mathematics and Information Technologies-Al-Khwarizmi, Abstracts of VIII International scientific conference, Samarkand state university named after Sharof Rashidov, Samarkand, 2023, 81

[29] Parovik R. I., “On a Finite-Difference Scheme for an Hereditary Oscillatory Equation. Journal of Mathematical Sciences”, 2021, 253:4, 547-557 DOI: 10.1007/s10958-021-05252-2 | MR

[30] Diethelm K., Ford N. J., Freed A. D., “A predictor-corrector approach for the numerical solution of fractional differential equations”, Nonlinear Dynamics, 29:1-4 (2002), 3-22 DOI: 10.1023/A:1016592219341 | DOI | MR | Zbl

[31] Yang C., Liu F., “A computationally effective predictor-corrector method for simulating fractional order dynamical control system”, ANZIAM Journal, 47 (2005), 168-184 DOI: 10.21914/anziamj.v47i0.1037 | DOI | MR

[32] Garrappa R., “Numerical solution of fractional differential equations: A survey and a software tutorial”, Mathematics, 6:2 (2018), 016 DOI: 10.3390/math6020016 | DOI

[33] Gavrilyuk I. et al., Exact and truncated difference schemes for boundary value ODEs, v. 159, Springer Science Business Media, Basel AG, 2011, 247 . pp. DOI: 10.1007/978-3-0348-0107-2 | MR

[34] Bendixson I., “Sur les courbes définies par des équations différentielles”, Acta Math., 24(1) (1901), 1–88 | DOI | MR

[35] Kim V., Parovik R., “Mathematical model of fractional duffing oscillator with variable memory”, Mathematics, 8:11 (2020), 1-14 DOI:10.3390/math8112063