Mots-clés : oscillogram, accumulation rate
@article{VKAM_2024_46_1_a2,
author = {D. V. Makarov},
title = {The classical mathematical model of {S.V.} {Dubovsky} and some of its modifications for describing {K-waves}},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {52--69},
year = {2024},
volume = {46},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a2/}
}
TY - JOUR AU - D. V. Makarov TI - The classical mathematical model of S.V. Dubovsky and some of its modifications for describing K-waves JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2024 SP - 52 EP - 69 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a2/ LA - ru ID - VKAM_2024_46_1_a2 ER -
D. V. Makarov. The classical mathematical model of S.V. Dubovsky and some of its modifications for describing K-waves. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 46 (2024) no. 1, pp. 52-69. http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a2/
[1] Clarke H., Physical economy: a preliminary inquiry into the physical laws governing the periods of famines and panics, Verlag nicht ermittelbar, 1847
[2] Jevons W.S., “The solar-commercial cycle”, Nature, 26:662 (1882), 226-228 | DOI
[3] Kondratev N. D., Bolshie tsikly kon'yunktury. Izbrannye raboty, Izdatelstvo Yurait, M., 2021, 490 pp.
[4] Alexander M. A., The Kondratiev cycle: A generational interpretation, IUniverse, Bloomington, 2002, 314 pp.
[5] Makarov D.V., Parovik R.I., Teoriya dlinnykh voln Kondrateva: nauchnye shkoly, metodologicheskie podkhody, matematicheskie modeli, Izdatelskii dom Akademii Estestvoznaniya, M., 2023, 116 pp.
[6] Menshikov S. M., Klimenko L. A., Dlinnye volny v ekonomike: kogda obschestvo menyaet kozhu, Mezhdunarodnye otnosheniya, M., 1989, 226 pp.
[7] Dubovskii S. V., “Ob'ekt modelirovaniya tsikl Kondrateva”, Matematicheskoe modelirovanie, 7:6 (1995), 65-74 | MR | Zbl
[8] Hirooka M., Innovation Dynamism and Economic Growth. A Nonlinear Perspective, Edward Elgar, Cheltenham, Northampton, 2006
[9] Akaev A. A., “Matematicheskie osnovy innovatsionno-tsiklicheskoi teorii ekonomicheskogo razvitiya Shumpetera-Kondrateva”, Kondratevskie volny, v. 1, 2012, 314-341
[10] Gladkikh I. P., Dlinnye volny v postindustrialnoi ekonomike: Teoreticheskie osnovy i osobennosti, Lambert Academic, Saarbryukken, 2012
[11] Makarov D.V., “Ekonomiko-matematicheskoe modelirovanie innovatsionnykh sistem”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2014, no. 1(8), 66-70
[12] Bendixson I., “Sur les courbes définies par des équations différentielles”, Acta Math., 24(1) (1901), 1–88 | DOI | MR
[13] Iserles A., A first course in the numerical analysis of differential equations, v. 44, Cambridge university press, 2009, 459 pp. | MR | Zbl
[14] Dubovskii S. V., “Modelirovanie tsiklov Kondrateva i prognozirovanie krizisov”, Kondratevskie volny, v. 1, 2012, 179-188
[15] Stoleryu L., Ravnovesie i ekonomicheskii rost, Statistika, M., 1974, 472 pp.
[16] Makarov D. V., “Ob odnoi ereditarnoi dinamicheskoi sisteme, modeliruyuschei ekonomicheskie tsikly”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2016, no. 2 (13), 55-61 | Zbl
[17] Makarov D.V., Parovik R.I., “Modeling of the economic cycles using the theory of fractional calculus”, Journal of Internet Banking and Commerce, 21:S21, S6 (2016)
[18] Makarov D. V., Parovik R. I., “Obobschennaya matematicheskaya model Dubovskogo dlya prognozirovaniya ekonomicheskikh krizisov”, Nauchno-tekhnicheskii vestnik Povolzhya, 2016, no. 1, 74-77
[19] Makarov D., Parovik R., “Numerical modeling of Kondratyev’s long waves taking into account heredity”, AIP Conference Proceedings, 2365 (2021), 020007 DOI: 10.1063/5.0056847 | DOI
[20] Makarov D.V., Parovik R.I., “A computer program for the numerical analysis of economic cycles within the framework of the Dubovsky generalized model”, AIP Conference Proceedings, 2467 (2022), 060015 DOI: 10.1063/5.0092376 | DOI
[21] Makarov D. V., Parovik R. I., “Drobnaya matematicheskaya model S.V. Dubovskogo i ekonomicheskie tsikly”, Problemy vychislitelnoi i prikladnoi matematiki, 2023, no. 5(52), 8-25.
[22] Makarov D.V., Parovik R.I., “Drobnaya matematicheskaya model S.V. Dubovskogo s effektom peremennoi nasledstvennosti”, Problemy vychislitelnoi i prikladnoi matematiki, 2023, no. 6(53), 5-22.
[23] Tarasov V.E., “On history of mathematical economics: Application of fractional calculus”, Mathematics, 7 (2019) DOI: 10.3390/ math7060509 | Zbl
[24] Oldham K. B., Spanier J., The fractional calculus. Theory and applications of differentiation and integration to arbitrary order, Academic Press, London, 1974, 240 pp. | MR | Zbl
[25] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.
[26] Miller K. S., Ross B., An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience publication, New York, 1993, 384 pp. | MR | Zbl
[27] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[28] Pskhu A.V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.
[29] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl