The classical mathematical model of S.V. Dubovsky and some of its modifications for describing K-waves
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 46 (2024) no. 1, pp. 52-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, the classical mathematical model of S.V. was investigated. Dubovsky to describe long waves N.D. Kondratiev (K-waves). This model describes the dynamics of free fluctuations in the efficiency of new technologies and the efficiency of capital productivity. From the point of view of mathematics, it is a system of nonlinear ordinary differential equations of the first order. The purpose of the research is to visualize the results of the solution using numerical modeling of a modification of the mathematical model of S.V. Dubovsky, which consists in taking into account the dependence of the accumulation rate on capital productivity and external inflow of investments and new technological models. It was also shown using the Bendixson test that the classical model of S.V. Dubovsky can generate closed phase trajectories, which indicates its use in describing economic crises and cycles. Similarly, it was shown that within the framework of the modified mathematical model S.V. Dubovsky can also have closed phase trajectories. It is shown using computer modeling that the dependence of the accumulation rate on capital productivity can influence the period of cyclical fluctuations, which is important when modeling real economic cycles and crises. Taking into account the external influx of investment and new technologies (managerial decisions) using harmonic functions significantly complicates the appearance of phase trajectories, however, closed phase trajectories are also possible here. These harmonic functions determine forced fluctuations in the efficiency of new technologies and the efficiency of capital productivity, and here resonance effects may occur, which were shown using computer modeling in this article. Computer simulation was carried out in the computer algebra environment Matlab.
Keywords: K-waves, phase trajectory, economic cycles and crises, Bendixson criterion, model, Adams-Bashforth-Moulton method.
Mots-clés : oscillogram, accumulation rate
@article{VKAM_2024_46_1_a2,
     author = {D. V. Makarov},
     title = {The classical mathematical model of {S.V.} {Dubovsky} and some of its modifications for describing {K-waves}},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {52--69},
     year = {2024},
     volume = {46},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a2/}
}
TY  - JOUR
AU  - D. V. Makarov
TI  - The classical mathematical model of S.V. Dubovsky and some of its modifications for describing K-waves
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 52
EP  - 69
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a2/
LA  - ru
ID  - VKAM_2024_46_1_a2
ER  - 
%0 Journal Article
%A D. V. Makarov
%T The classical mathematical model of S.V. Dubovsky and some of its modifications for describing K-waves
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 52-69
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a2/
%G ru
%F VKAM_2024_46_1_a2
D. V. Makarov. The classical mathematical model of S.V. Dubovsky and some of its modifications for describing K-waves. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 46 (2024) no. 1, pp. 52-69. http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a2/

[1] Clarke H., Physical economy: a preliminary inquiry into the physical laws governing the periods of famines and panics, Verlag nicht ermittelbar, 1847

[2] Jevons W.S., “The solar-commercial cycle”, Nature, 26:662 (1882), 226-228 | DOI

[3] Kondratev N. D., Bolshie tsikly kon'yunktury. Izbrannye raboty, Izdatelstvo Yurait, M., 2021, 490 pp.

[4] Alexander M. A., The Kondratiev cycle: A generational interpretation, IUniverse, Bloomington, 2002, 314 pp.

[5] Makarov D.V., Parovik R.I., Teoriya dlinnykh voln Kondrateva: nauchnye shkoly, metodologicheskie podkhody, matematicheskie modeli, Izdatelskii dom Akademii Estestvoznaniya, M., 2023, 116 pp.

[6] Menshikov S. M., Klimenko L. A., Dlinnye volny v ekonomike: kogda obschestvo menyaet kozhu, Mezhdunarodnye otnosheniya, M., 1989, 226 pp.

[7] Dubovskii S. V., “Ob'ekt modelirovaniya tsikl Kondrateva”, Matematicheskoe modelirovanie, 7:6 (1995), 65-74 | MR | Zbl

[8] Hirooka M., Innovation Dynamism and Economic Growth. A Nonlinear Perspective, Edward Elgar, Cheltenham, Northampton, 2006

[9] Akaev A. A., “Matematicheskie osnovy innovatsionno-tsiklicheskoi teorii ekonomicheskogo razvitiya Shumpetera-Kondrateva”, Kondratevskie volny, v. 1, 2012, 314-341

[10] Gladkikh I. P., Dlinnye volny v postindustrialnoi ekonomike: Teoreticheskie osnovy i osobennosti, Lambert Academic, Saarbryukken, 2012

[11] Makarov D.V., “Ekonomiko-matematicheskoe modelirovanie innovatsionnykh sistem”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2014, no. 1(8), 66-70

[12] Bendixson I., “Sur les courbes définies par des équations différentielles”, Acta Math., 24(1) (1901), 1–88 | DOI | MR

[13] Iserles A., A first course in the numerical analysis of differential equations, v. 44, Cambridge university press, 2009, 459 pp. | MR | Zbl

[14] Dubovskii S. V., “Modelirovanie tsiklov Kondrateva i prognozirovanie krizisov”, Kondratevskie volny, v. 1, 2012, 179-188

[15] Stoleryu L., Ravnovesie i ekonomicheskii rost, Statistika, M., 1974, 472 pp.

[16] Makarov D. V., “Ob odnoi ereditarnoi dinamicheskoi sisteme, modeliruyuschei ekonomicheskie tsikly”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2016, no. 2 (13), 55-61 | Zbl

[17] Makarov D.V., Parovik R.I., “Modeling of the economic cycles using the theory of fractional calculus”, Journal of Internet Banking and Commerce, 21:S21, S6 (2016)

[18] Makarov D. V., Parovik R. I., “Obobschennaya matematicheskaya model Dubovskogo dlya prognozirovaniya ekonomicheskikh krizisov”, Nauchno-tekhnicheskii vestnik Povolzhya, 2016, no. 1, 74-77

[19] Makarov D., Parovik R., “Numerical modeling of Kondratyev’s long waves taking into account heredity”, AIP Conference Proceedings, 2365 (2021), 020007 DOI: 10.1063/5.0056847 | DOI

[20] Makarov D.V., Parovik R.I., “A computer program for the numerical analysis of economic cycles within the framework of the Dubovsky generalized model”, AIP Conference Proceedings, 2467 (2022), 060015 DOI: 10.1063/5.0092376 | DOI

[21] Makarov D. V., Parovik R. I., “Drobnaya matematicheskaya model S.V. Dubovskogo i ekonomicheskie tsikly”, Problemy vychislitelnoi i prikladnoi matematiki, 2023, no. 5(52), 8-25.

[22] Makarov D.V., Parovik R.I., “Drobnaya matematicheskaya model S.V. Dubovskogo s effektom peremennoi nasledstvennosti”, Problemy vychislitelnoi i prikladnoi matematiki, 2023, no. 6(53), 5-22.

[23] Tarasov V.E., “On history of mathematical economics: Application of fractional calculus”, Mathematics, 7 (2019) DOI: 10.3390/ math7060509 | Zbl

[24] Oldham K. B., Spanier J., The fractional calculus. Theory and applications of differentiation and integration to arbitrary order, Academic Press, London, 1974, 240 pp. | MR | Zbl

[25] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[26] Miller K. S., Ross B., An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience publication, New York, 1993, 384 pp. | MR | Zbl

[27] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[28] Pskhu A.V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[29] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl