On the new problems in stereometry
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 46 (2024) no. 1, pp. 22-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It were given original combinative problems with regular polyhedrons, which including well-known tetrahedrons and cubes, and also the lesser-known octahedrons, dodecahedrons and icosahedrons due to its complexity. The solution of the problem of the calculation of the edge of octahedron, dodecahedron and icosahedron by using the the side of inscribed and circumscribed cubes has been given. The radius of the circumsphered circle and midsphere around the dodecahedron and icosahedron has been calculated. Two triangular pyramids and two tetragonal ones, as well as the triangular pyramid with a cone have been arranged. In the second chapter of the paper, it were shown several non-trivial combinations of the bodies with a common vertex, in which the height of one body was a lateral edge of the other one and in which the volume of generalities bodies was found. Two triangular pyramids and two tetragonal ones, as well as the triangular pyramid with a cone have been arranged. Each problem was going with the detailed figure, and the solution to the problems with Platon body was including several supporting ones as well. This paper could be used by high school mathematics teachers not only as methodological support, but also as a clear example in preparation for the Olympiad tasks in math for students.
Keywords: regular bodies, Euclid's theorem, angular defect, aggregates and crosscuts of the bodies.
Mots-clés : Euler ratio
@article{VKAM_2024_46_1_a1,
     author = {B. P. Fedorov and S. B. Bogdanova and S. O. Gladkov},
     title = {On the new problems in stereometry},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {22--51},
     year = {2024},
     volume = {46},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a1/}
}
TY  - JOUR
AU  - B. P. Fedorov
AU  - S. B. Bogdanova
AU  - S. O. Gladkov
TI  - On the new problems in stereometry
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 22
EP  - 51
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a1/
LA  - ru
ID  - VKAM_2024_46_1_a1
ER  - 
%0 Journal Article
%A B. P. Fedorov
%A S. B. Bogdanova
%A S. O. Gladkov
%T On the new problems in stereometry
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 22-51
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a1/
%G ru
%F VKAM_2024_46_1_a1
B. P. Fedorov; S. B. Bogdanova; S. O. Gladkov. On the new problems in stereometry. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 46 (2024) no. 1, pp. 22-51. http://geodesic.mathdoc.fr/item/VKAM_2024_46_1_a1/

[1] \fbox {Fedorov B. P.}, Bogdanova S. B., Gladkov S. O., “Nekotorye miniatyury s kubom”, Vestnik KRAUNTs. Fiz.-mat. nauki, 44:3 (2023), 39–57 DOI: 10.26117/2079-6641-2023-44-3-39-57 | DOI | MR

[2] \fbox {Fedorov B. P.}, Bogdanova S. B., Gladkov S. O., “O nekotorykh neizvestnykh rezultatakh, svyazannykh s netrivialnymi svoistvami obychnykh treugolnikov. Ch. I.”, Vestnik KRAUNTs. Fiz.-mat. nauki, 37:4 (2021), 216–234 DOI: 10.26117/2079-6641-2021-37-4-216-234 | MR

[3] \fbox {Fedorov B. P.}, Bogdanova S. B., Gladkov S. O., “O nekotorykh neizvestnykh rezultatakh, svyazannykh s netrivialnymi svoistvami obychnykh treugolnikov. Ch. II.”, Vestnik KRAUNTs. Fiz.-mat. nauki, 39:2 (2022), 197–221 DOI: 10.26117/2079-6641-2022-39-2-197-221 | MR

[4] Vennidzher M., Modeli mnogogrannikov, Per. s angl. V.V. Firsova. Pod red. i s poslesl. I. M. Yagloma., Mir, M., 1974, 236 pp. | MR

[5] Sharygin I. F., Golubev V. I., Fakultativnyi kurs po matematike: Reshenie zadach, Ucheb. posobie dlya 11 kl., Prosveschenie, M., 1991, 384 pp.

[6] Skanavi M. I., Sbornik zadach po matematike dlya postupayuschikh v vuzy, Mir i Obrazovanie, M., 2013, 608 pp.

[7] Antonov N. P., Vygodskii M. Ya., Nikitin V. V., Sankin A. I., Sbornik zadach po elementarnoi matematike, Fizmatlit, M., 1960, 928 pp.

[8] Dorofeev G. V., Potapov M. K., Rozov N. Kh., Izbrannye voprosy elementarnoi matematiki, Posobie po matematike dlya postupayuschikh v vuzy, Nauka, M., 1976, 638 pp.

[9] Litvinenko V. N., Sbornik zadach po stereometrii s metodami reshenii, Prosveschenie, M., 1998, 255 pp.

[10] Litvinenko V. N., Reshenie tipovykh zadach po geometrii, Prosveschenie, M., 1999, 280 pp.

[11] Prasolov V. V., Zadachi po stereometrii, MTsNMO, M., 2010, 352 pp.

[12] Smirnov V. A., Geometriya. Stereometriya, Posobie dlya podgotovki k EGE, MTsNMO, M., 2009, 273 pp. | MR

[13] Aleksandrov A. D., Verner A. L., Ryzhik V. I., Stereometriya. Geometriya v prostranstve, Ucheb. posobie dlya uch. st. kl. i abiturientov., Alfa, Visaginas, 1998, 576 pp.

[14] Prokhorov Yu. V., Matematicheskii entsiklopedicheskii slovar, Sovetskaya entsiklopediya, M., 1988, 847 pp. | MR

[15] Aleksandrov P. S., Markushevich A. I., Khinchin A. Ya., Entsiklopediya elementarnoi matematiki, Geometriya, v. 5, Nauka, M., 1966, 624 pp.

[16] Kokster G. S. M., Vvedenie v geometriyu, Nauka, M., 1988, 847 pp.

[17] Lyusternik L. A., Vypuklye figury i mnogogranniki, GITTL, Moskva, 1956, 212 pp. | MR

[18] Ponarin Ya. P., Elementarnaya geometriya, Stereometriya, preobrazovaniya prostranstva, v. 2, MTsNMO, Moskva, 2006, 256 pp.