Method for estimation of near-surface sedimentary rock state based on the results of observations of geoacoustic emission dynamic characteristics
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 45 (2023) no. 4, pp. 109-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The technology of observations of the near-surface sedimentary rock state is developed and realized in IKIR FEB RAS since 2003. It is based on the results of geoacoustic emission signal processing and analysis. The relation between the degree of stress-strain state of sedimentary rocks and pulse flux intensity in geoacoustic emission signal has been discovered before. Continuous measurements of geoacoustic emission pulse flux intensity, pulse form and their distributions are carried out. The final aim of the investigations is the development of methods for analysis of the observed anomalies of geoacoutic emission signal characteristics to detect their relation with the probability of earthquake occurrences. At the current stage of the research, a probabilistic model of GAE signal formation in the near-surface sedimentary rocks at the reception site is presented. The model makes it possible to describe the changes in the nearsurface sedimentary rocks state based on the results of estimations of the changeability of pulse duration distribution pattern and that of their amplitudes taking into account the update of the model for signal formation at the receiving device input. The results of computational experiments with natural signals of geoacoustic emission, confirming the changes made in the model of GAE signal formation. Implementation of the research results into the observation practice makes it possible to improve the quality of real-time observations of the changes in the near-surface sedimentary rock state without expensive and laborious methods of direct measurements. Time changes in the following characteristics of GAE are considered: changes in pulse duration and diversity of their amplitude-phase modulation in a moving time window of different duration. The result is achieved by visual representation of GAE signal characteristics in the form of three-dimensional images of statistical distributions of pulse duration and amplitudes mapped on a graph at defined time intervals. Such a representation allows one to see the occurring anomalies in GAE signal characteristics parameters and to classify the observed anomalies. In the future, that will allow to connect the detected anomalies with certain seismic events and to distinguish them from the anomalies occurring under climatic and seasonal factors impact.
Keywords: condition monitoring, near-surface rocks, dynamic characteristics
Mots-clés : geoacoustic emission.
@article{VKAM_2023_45_4_a8,
     author = {Yu.I. Senkrvich and M. A. Mishenko},
     title = {Method for estimation of near-surface sedimentary rock state based on the results of observations of geoacoustic emission dynamic characteristics},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {109--121},
     year = {2023},
     volume = {45},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a8/}
}
TY  - JOUR
AU  - Yu.I. Senkrvich
AU  - M. A. Mishenko
TI  - Method for estimation of near-surface sedimentary rock state based on the results of observations of geoacoustic emission dynamic characteristics
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 109
EP  - 121
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a8/
LA  - ru
ID  - VKAM_2023_45_4_a8
ER  - 
%0 Journal Article
%A Yu.I. Senkrvich
%A M. A. Mishenko
%T Method for estimation of near-surface sedimentary rock state based on the results of observations of geoacoustic emission dynamic characteristics
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 109-121
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a8/
%G ru
%F VKAM_2023_45_4_a8
Yu.I. Senkrvich; M. A. Mishenko. Method for estimation of near-surface sedimentary rock state based on the results of observations of geoacoustic emission dynamic characteristics. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 45 (2023) no. 4, pp. 109-121. http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a8/

[1] Marapulets Yu. V., Senkevich Yu. I., Lukovenkova O. O., Solodchuk A. A., Larionov I. A., Mischenko M. A., Malkin E. I., Scherbina A. O., Gapeev M. I., Kompleksnyi analiz akusticheskikh i elektromagnitnykh signalov dlya otsenki urovnya seismicheskoi opasnosti, Dalnauka, Vladivostok, 2020, 120 pp.

[2] Muratov P. V., Rulenko O. P., Marapulets Yu. V., Solodchuk A. A., “Elektricheskii i akusticheskii otklik pripoverkhnostnykh osadochnykh porod na prokhozhdenie seismicheskikh voln ot zemletryasenii”, Vestnik KRAUNTs. Fiz.-mat. nauki, 25:5 (2018), 52–63, DOI: 10.18454/2079-6641-2018-25-5-62-73

[3] Senkevich Y., “Search for Hidden Patterns in Acoustic and Electromagnetic Pulse Signals”, IEEE, 2020 DOI: 10.1109/SCM50615.2020.9198754

[4] Gapeev M., Marapulets Yu., “Modeling Locations with Enhanced Earth’s Crust Deformation during Earthquake Preparation near the Kamchatka Peninsula”, Applied Sciences, 13:1 (2023), 290, DOI: 10.3390/app13010290 | DOI

[5] Lukovenkova O., Marapulets Yu., Solodchuk A., “Adaptive Approach to Time-Frequency Analysis of AE Signals of Rocks”, Sensors, 22 (2022), 9798, DOI: 10.3390/s22249798 | DOI

[6] Marapulets Yu. V., Lukovenkova O. O., Tristanov A. B., Kim A. A., Metody registratsii i chastotno-vremennogo analiza signalov geoakusticheskoi emissii, Dalnauka, Vladivostok, 2017, 75 pp.

[7] Vladimirova I. S., Lobkovskii L. I., Alekseev D. A. i dr., “Osobennosti seismicheskogo protsessa v zapadnoi chasti Aleutskoi subduktsionnoi zony i ikh vozmozhnaya svyaz s klimaticheskimi izmeneniyami v Arktike”, Arktika: ekologiya i ekonomika, 12:1 (2022), 58–67 DOI: 10.25283/2223-4594-2022-1-58-67

[8] Gapeev M. I., Marapulets Yu. V., “Modelirovanie zon otnositelnykh sdvigovykh deformatsii pered silnymi zemletryaseniyami na Kamchatke, proizoshedshimi v period 2018-2021 gg”, Vestnik KRAUNTs. Fiz.-mat. nauki, 37:4 (2021), 53–66, DOI: 10.26117/2079-6641-2021-37-4-53-66 | DOI | MR | Zbl

[9] Marapulets Yu. V., Shevtsov B. M., Mezomasshtabnaya akusticheskaya emissiya, Dalnauka, Vladivostok, 2012, 126 pp.

[10] Gapeev M. I., Solodchuk A. A., Parovik R. I., “Svyazannye ostsillyatory kak model vysokochastotnoi geoakusticheskoi emissii”, Vestnik KRAUNTs. Fiz.-mat. nauki, 40:3 (2022), 88–100, DOI: 10.26117/2079-6641-2022-40-3-88-100 | DOI | MR

[11] Gapeev M. I., “Otsenka oblastei povyshennykh deformatsii, voznikayuschikh pri podgotovke kamchatskikh zemletryasenii”, Vestnik KRAUNTs. Fiz.-mat. nauki, 41:4 (2022), 32–46, DOI: 10.26117/2079-6641-2022-41-4-32-46 | MR

[12] Nesterov S. V., Akulenko L. D., Gavrikov A. A., “Opredelenie dinamicheskoi plotnosti granulirovannoi sredy, propitannoi zhidkostyu”, DAN, 436:6 (2011), 760–763

[13] Gornaya entsiklopediya. Akusticheskie svoistva gornykh porod [Elektronnyi resurs] https://www.mining-enc.ru/a/akusticheskie-svojstva

[14] Khmelevskoi V. K., Geofizicheskie metody issledovaniya zemnoi kory [Elektronnyi resurs] www.astronet.ru/db/msg/1173309

[15] Senkevich Yu. I., Marapulets Yu. V., Lukovenkova O. O. i dr., “Metodika vydeleniya informativnykh priznakov v signalakh geoakusticheskoi emissii”, Trudy SPIIRAN, 18:5 (2019), 1066–1092 | DOI