@article{VKAM_2023_45_4_a3,
author = {O. V. Sheremetyeva},
title = {Chaotic modes in the low-mode model $\alpha\Omega$-dynamo with hereditary $\alpha$-quenching by the field energy},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {52--66},
year = {2023},
volume = {45},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a3/}
}
TY - JOUR AU - O. V. Sheremetyeva TI - Chaotic modes in the low-mode model $\alpha\Omega$-dynamo with hereditary $\alpha$-quenching by the field energy JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2023 SP - 52 EP - 66 VL - 45 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a3/ LA - ru ID - VKAM_2023_45_4_a3 ER -
%0 Journal Article %A O. V. Sheremetyeva %T Chaotic modes in the low-mode model $\alpha\Omega$-dynamo with hereditary $\alpha$-quenching by the field energy %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2023 %P 52-66 %V 45 %N 4 %U http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a3/ %G ru %F VKAM_2023_45_4_a3
O. V. Sheremetyeva. Chaotic modes in the low-mode model $\alpha\Omega$-dynamo with hereditary $\alpha$-quenching by the field energy. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 45 (2023) no. 4, pp. 52-66. http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a3/
[1] Vodinchar G.M., “Ispolzovanie sobstvennykh mod kolebanii vyazkoi vraschayuscheisya zhidkosti v zadache krupnomasshtabnogo dinamo”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2013, no. 2(7), 33–42 DOI: 10.18454/2079-6641-2013-7-2-33-42 | Zbl
[2] Vodinchar G. M., Feschenko L.K., “6-truinaya kinematicheskaya model geodinamo”, Nauchnye vedomosti BelGU. Matematika Fizika, 2014, no. 5, 94–102
[3] Vodinchar G. M., Feschenko L.K., “Inversii v modeli geodinamo, upravlyaemoi 6-yacheikovoi konvektsiei”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2015, no. 2(11), 45–54 DOI: 10.18454/2079-6641-2015-11-2-45-54
[4] Feschenko L. K., Vodinchar G. M., “Reversals in the large-scale $\alpha \Omega$-dynamo with memory”, Nonlinear Processes in Geophysics, 22:4 (2015), 361-369 DOI: 10.5194/npg-22-361-2015 | DOI
[5] Vodinchar G. M., Feshchenko L. K., “Model of geodynamo dryven by six-jet convection in the Earth's core”, Magnetohydrodynamics, 52:1 (2016), 287-300 | DOI | MR
[6] Vodinchar G. M., Godomskaya A. N., Sheremeteva O. V., “Inversii magnitnogo polya v dinamicheskoi sisteme so stokhasticheskimi $\alpha\Omega$-generatorami”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, no. 4(20), 76–82 DOI: 10.18454/2079-6641-2017-20-4-76-82
[7] Vodinchar G. M., Parovik R. I., Perezhogin A. S., Sheremeteva O. V., “Raboty po modelirovaniyu fizicheskikh protsessov i sistem v institute kosmofizicheskikh issledovanii i rasprostraneniya radiovoln DVO RAN”, Istoriya nauki i tekhniki, 2017, no. 8, 100–112
[8] Godomskaya A. N., Sheremetyeva O. V., “Reversals in the low-mode model dynamo with $\alpha \Omega$-generators”, E3S Web of Conferences, 62 (2018), 02016 DOI: 10.1051/ e3sconf/ 20186202016 | DOI
[9] Sheremeteva O. V., Godomskaya A. N., “Modelirovanie rezhimov generatsii magnitnogo polya v malomodovoi modeli $\alpha \Omega$-dinamo s izmenyayuscheisya intensivnostyu $\alpha$-effekta”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 14:2 (2021), 27–38 DOI: 10.14529/mmp210203 | Zbl
[10] Godomskaya A. N., Sheremetyeva O. V., “The modes of magnetic field generation in a low-mode model of $\alpha \Omega$-dynamo with $\alpha$-generator varying intensity regulated by a function with an alternating kernel”, EPJ Web of Conferences, 254 (2021), 02015 DOI: 10.1051/epjconf/202125402015
[11] Sheremeteva O. V., “Rezhimy generatsii magnitnogo polya v malomodovoi modeli $\alpha \Omega$-dinamo s dinamicheskim podavleniem $\alpha$-effekta energiei polya”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2021, no. 4(37), 92–103 DOI: 10.26117/2079-6641-2021-37-4-92-103 | DOI | MR | Zbl
[12] Sheremeteva O. V., “Dinamika izmeneniya rezhimov generatsii magnitnogo polya v zavisimosti ot chastoty ostsillyatsii protsessa podavleniya $\alpha$-effekta energiei polya v modeli $\alpha \Omega$-dinamo”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2022, no. 4(41), 107–119 DOI: 10.26117/2079-6641-2022-41-4-107-119 | MR
[13] Sheremetyeva O., “Magnetic Field Dynamical Regimes in a Large-Scale Low-Mode $\alpha\Omega$-Dynamo Model with Hereditary $\alpha$-Quenching by Field Energy”, Mathematics, 11(10) (2023), 2297 . DOI: 2023.10.3390/math11102297 | DOI
[14] Vodinchar G. M., Feshchenko L. K., “Computational Technology for the Basis and Coefficients of Geodynamo Spectral Models in the Maple System”, Mathematics, 11(13) (2023), 3000 . DOI: 10.3390/math11133000 | DOI
[15] Kolesnichenko A. V., Marov M. Ya., Turbulentnost i samoorganizatsiya. Problemy modelirovaniya kosmicheskikh i prirodnykh sred, BINOM, M, 2009, 632 pp. | MR
[16] Merril R. T., McElhinny M. W., McFadden P. L., The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle, Academic Press, London, 1996, 531 pp.
[17] Zheligovskii V. A., Chertovskikh R. A., “O kinematicheskoi generatsii magnitnykh mod blokhovskogo tipa”, Fizika Zemli, 2020, no. 1, 103–116 DOI: 10.31857/S0002333720010159
[18] Rozenknop, L.M.; Reznikov, E.L., “On the free oscillations of a rotating viscous in the outer Earth core”, Vychislitelnaya Seismologiya: Pryamye Zadachi Matematicheskoi Fiziki, 1998, no. 30, 121–132
[19] Vodinchar G. M., Feschenko L.K., Biblioteka programm dlya issledovaniya «Malomodovoi modeli geodinamo» «LowModedGeodinamoModel», Cv-vo o gos. reg. # 50201100092, 2011
[20] Vodinchar G. M., Baza dannykh «Parametry sobstvennykh mod svobodnykh kolebanii MGD polei v yadre Zemli», Cv-vo o gos. reg. # 2019620054, 10.01.2019
[21] Vodinchar G. M., “Using symbolic calculations to calculate the eigenmodes of the free damping of a geomagnetic field”, E3S Web of Conferences, 62 (2018), 02018 DOI: 10.1051/e3sconf/20186202018 | DOI
[22] Sokolov D. D., Nefedov S. N., “Malomodovoe priblizhenie v zadache zvezdnogo dinamo”, Vych. met. programmirovanie, 8:2 (2007), 195–204
[23] Gledzer E. B., Dolzhanskii F. V., Obukhov A. M., Sistemy gidrodinamicheskogo tipa i ikh primenenie, Nauka, M., 1981, 368 pp. | MR
[24] Elsgolts L. E., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M, 1965, 424 pp.
[25] Kurosh A. G., Kurs vysshei algebry, Nauka, M, 1968, 431 pp. | MR
[26] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Part I: Theory”, Meccanica, 1980, no. 15(1), 9–20 | DOI | Zbl
[27] Kuznetsov S. P., Dinamicheskii khaos i giperbolicheskie attraktory: ot matematiki k fizike, Izhevskii institut kompyuternykh issledovanii, M.-Izhevsk, 2013, 488 pp.