Chaotic modes in the low-mode model $\alpha\Omega$-dynamo with hereditary $\alpha$-quenching by the field energy
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 45 (2023) no. 4, pp. 52-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article considers the conditions under which it is possible to simulate the chaotic regime of the magnetic field in a large-scale model $\alpha\Omega$-dynamo in a low-mode approximation. The intensity of the $\alpha$– and $\Omega$-generators is regulated by the Lorentz force. The quenching of the $\alpha$-effect is determined by the action of the Lorentz force through a process with hereditarity properties (finite «memory»). The nature of the impact of the process is determined by an alternating kernel with variable damping frequency and damping coefficient. The effect of large-scale and turbulent generators on the magnetohydrodynamic system is embedded in the control parameters — the Reynolds number and the measure of the $\alpha$-effect, respectively. Within the framework of this work, the solutions of the magnetohydrodynamic system are investigated for Lyapunov stability in the vicinity of the rest point, depending on the set values of the input parameters. Based on the results of the numerical experiment, the limitations of the stability characteristic and parameters of the system are determined, under which it is possible to simulate the chaotic regime of the magnetic field.
Keywords: $\alpha\Omega$-dynamo, hereditarity, $\alpha$-quenching, low-mode dynamo model, magnetic field, chaotic regime, reversals.
@article{VKAM_2023_45_4_a3,
     author = {O. V. Sheremetyeva},
     title = {Chaotic modes in the low-mode model $\alpha\Omega$-dynamo with hereditary $\alpha$-quenching by the field energy},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {52--66},
     year = {2023},
     volume = {45},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a3/}
}
TY  - JOUR
AU  - O. V. Sheremetyeva
TI  - Chaotic modes in the low-mode model $\alpha\Omega$-dynamo with hereditary $\alpha$-quenching by the field energy
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 52
EP  - 66
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a3/
LA  - ru
ID  - VKAM_2023_45_4_a3
ER  - 
%0 Journal Article
%A O. V. Sheremetyeva
%T Chaotic modes in the low-mode model $\alpha\Omega$-dynamo with hereditary $\alpha$-quenching by the field energy
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 52-66
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a3/
%G ru
%F VKAM_2023_45_4_a3
O. V. Sheremetyeva. Chaotic modes in the low-mode model $\alpha\Omega$-dynamo with hereditary $\alpha$-quenching by the field energy. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 45 (2023) no. 4, pp. 52-66. http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a3/

[1] Vodinchar G.M., “Ispolzovanie sobstvennykh mod kolebanii vyazkoi vraschayuscheisya zhidkosti v zadache krupnomasshtabnogo dinamo”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2013, no. 2(7), 33–42 DOI: 10.18454/2079-6641-2013-7-2-33-42 | Zbl

[2] Vodinchar G. M., Feschenko L.K., “6-truinaya kinematicheskaya model geodinamo”, Nauchnye vedomosti BelGU. Matematika Fizika, 2014, no. 5, 94–102

[3] Vodinchar G. M., Feschenko L.K., “Inversii v modeli geodinamo, upravlyaemoi 6-yacheikovoi konvektsiei”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2015, no. 2(11), 45–54 DOI: 10.18454/2079-6641-2015-11-2-45-54

[4] Feschenko L. K., Vodinchar G. M., “Reversals in the large-scale $\alpha \Omega$-dynamo with memory”, Nonlinear Processes in Geophysics, 22:4 (2015), 361-369 DOI: 10.5194/npg-22-361-2015 | DOI

[5] Vodinchar G. M., Feshchenko L. K., “Model of geodynamo dryven by six-jet convection in the Earth's core”, Magnetohydrodynamics, 52:1 (2016), 287-300 | DOI | MR

[6] Vodinchar G. M., Godomskaya A. N., Sheremeteva O. V., “Inversii magnitnogo polya v dinamicheskoi sisteme so stokhasticheskimi $\alpha\Omega$-generatorami”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, no. 4(20), 76–82 DOI: 10.18454/2079-6641-2017-20-4-76-82

[7] Vodinchar G. M., Parovik R. I., Perezhogin A. S., Sheremeteva O. V., “Raboty po modelirovaniyu fizicheskikh protsessov i sistem v institute kosmofizicheskikh issledovanii i rasprostraneniya radiovoln DVO RAN”, Istoriya nauki i tekhniki, 2017, no. 8, 100–112

[8] Godomskaya A. N., Sheremetyeva O. V., “Reversals in the low-mode model dynamo with $\alpha \Omega$-generators”, E3S Web of Conferences, 62 (2018), 02016 DOI: 10.1051/ e3sconf/ 20186202016 | DOI

[9] Sheremeteva O. V., Godomskaya A. N., “Modelirovanie rezhimov generatsii magnitnogo polya v malomodovoi modeli $\alpha \Omega$-dinamo s izmenyayuscheisya intensivnostyu $\alpha$-effekta”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 14:2 (2021), 27–38 DOI: 10.14529/mmp210203 | Zbl

[10] Godomskaya A. N., Sheremetyeva O. V., “The modes of magnetic field generation in a low-mode model of $\alpha \Omega$-dynamo with $\alpha$-generator varying intensity regulated by a function with an alternating kernel”, EPJ Web of Conferences, 254 (2021), 02015 DOI: 10.1051/epjconf/202125402015

[11] Sheremeteva O. V., “Rezhimy generatsii magnitnogo polya v malomodovoi modeli $\alpha \Omega$-dinamo s dinamicheskim podavleniem $\alpha$-effekta energiei polya”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2021, no. 4(37), 92–103 DOI: 10.26117/2079-6641-2021-37-4-92-103 | DOI | MR | Zbl

[12] Sheremeteva O. V., “Dinamika izmeneniya rezhimov generatsii magnitnogo polya v zavisimosti ot chastoty ostsillyatsii protsessa podavleniya $\alpha$-effekta energiei polya v modeli $\alpha \Omega$-dinamo”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2022, no. 4(41), 107–119 DOI: 10.26117/2079-6641-2022-41-4-107-119 | MR

[13] Sheremetyeva O., “Magnetic Field Dynamical Regimes in a Large-Scale Low-Mode $\alpha\Omega$-Dynamo Model with Hereditary $\alpha$-Quenching by Field Energy”, Mathematics, 11(10) (2023), 2297 . DOI: 2023.10.3390/math11102297 | DOI

[14] Vodinchar G. M., Feshchenko L. K., “Computational Technology for the Basis and Coefficients of Geodynamo Spectral Models in the Maple System”, Mathematics, 11(13) (2023), 3000 . DOI: 10.3390/math11133000 | DOI

[15] Kolesnichenko A. V., Marov M. Ya., Turbulentnost i samoorganizatsiya. Problemy modelirovaniya kosmicheskikh i prirodnykh sred, BINOM, M, 2009, 632 pp. | MR

[16] Merril R. T., McElhinny M. W., McFadden P. L., The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle, Academic Press, London, 1996, 531 pp.

[17] Zheligovskii V. A., Chertovskikh R. A., “O kinematicheskoi generatsii magnitnykh mod blokhovskogo tipa”, Fizika Zemli, 2020, no. 1, 103–116 DOI: 10.31857/S0002333720010159

[18] Rozenknop, L.M.; Reznikov, E.L., “On the free oscillations of a rotating viscous in the outer Earth core”, Vychislitelnaya Seismologiya: Pryamye Zadachi Matematicheskoi Fiziki, 1998, no. 30, 121–132

[19] Vodinchar G. M., Feschenko L.K., Biblioteka programm dlya issledovaniya «Malomodovoi modeli geodinamo» «LowModedGeodinamoModel», Cv-vo o gos. reg. # 50201100092, 2011

[20] Vodinchar G. M., Baza dannykh «Parametry sobstvennykh mod svobodnykh kolebanii MGD polei v yadre Zemli», Cv-vo o gos. reg. # 2019620054, 10.01.2019

[21] Vodinchar G. M., “Using symbolic calculations to calculate the eigenmodes of the free damping of a geomagnetic field”, E3S Web of Conferences, 62 (2018), 02018 DOI: 10.1051/e3sconf/20186202018 | DOI

[22] Sokolov D. D., Nefedov S. N., “Malomodovoe priblizhenie v zadache zvezdnogo dinamo”, Vych. met. programmirovanie, 8:2 (2007), 195–204

[23] Gledzer E. B., Dolzhanskii F. V., Obukhov A. M., Sistemy gidrodinamicheskogo tipa i ikh primenenie, Nauka, M., 1981, 368 pp. | MR

[24] Elsgolts L. E., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M, 1965, 424 pp.

[25] Kurosh A. G., Kurs vysshei algebry, Nauka, M, 1968, 431 pp. | MR

[26] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Part I: Theory”, Meccanica, 1980, no. 15(1), 9–20 | DOI | Zbl

[27] Kuznetsov S. P., Dinamicheskii khaos i giperbolicheskie attraktory: ot matematiki k fizike, Izhevskii institut kompyuternykh issledovanii, M.-Izhevsk, 2013, 488 pp.