Solution of the inverse problem of identifying the order of the fractional derivative in a mathematical model of the dynamics of solar activitythe at rising phase
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 45 (2023) no. 4, pp. 36-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article refines the mathematical model of solar activity dynamics by solving the inverse problem. Experimental data on the observation of Wolf number values are used as additional information. This parameter of solar activity reflects the number of spots on the surface of the sun, and is considered an indicator of its activity. This process is characterized by observable cyclicality, periods of growth and decline. The analysis and processing of the initial data is carried out in order to isolate from the time series areas corresponding to an increase in solar activity. To describe this dynamic process, a previously proposed mathematical model for describing cycles 23 and 24 is used. The model is a Cauchy problem for a fractional analogue of the nonlinear Riccati equation, where the first-order derivative is replaced by the Gerasimov-Caputo fractional differentiation operator with an order from 0 to 1. The order of the fractional derivative is associated with the intensity of the process. This model equation is solved numerically using a nonlocal implicit finite-difference scheme. To clarify the values of the order of the fractional derivative, the one-dimensional optimization problem was solved using the second-order Levenberg-Marquardt iterative method, based on processed experimental data. It is shown that it is possible to refine the order of the fractional derivative in the solar activity model by solving the corresponding inverse problem, and the results obtained are in better agreement with the data.
Keywords: mathematical modeling, reverse problem, solar activity, Wolf number, sunspots, dynamic processes, nonlinear equations, saturation effect, fractional derivatives, ereditarity, MATLAB, parallel algorithms.
Mots-clés : Riccati equation, C
@article{VKAM_2023_45_4_a2,
     author = {D. A. Tvyordyj and R. I. Parovik},
     title = {Solution of the inverse problem of identifying the order of the fractional derivative in a mathematical model of the dynamics of solar activitythe at rising phase},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {36--51},
     year = {2023},
     volume = {45},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a2/}
}
TY  - JOUR
AU  - D. A. Tvyordyj
AU  - R. I. Parovik
TI  - Solution of the inverse problem of identifying the order of the fractional derivative in a mathematical model of the dynamics of solar activitythe at rising phase
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 36
EP  - 51
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a2/
LA  - ru
ID  - VKAM_2023_45_4_a2
ER  - 
%0 Journal Article
%A D. A. Tvyordyj
%A R. I. Parovik
%T Solution of the inverse problem of identifying the order of the fractional derivative in a mathematical model of the dynamics of solar activitythe at rising phase
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 36-51
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a2/
%G ru
%F VKAM_2023_45_4_a2
D. A. Tvyordyj; R. I. Parovik. Solution of the inverse problem of identifying the order of the fractional derivative in a mathematical model of the dynamics of solar activitythe at rising phase. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 45 (2023) no. 4, pp. 36-51. http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a2/

[1] Chen P. F., “Coronal Mass Ejections: Models and Their Observational Basis”, Living Reviews in Solar Physics, 8:1 (2011), 1–93 DOI: 10.12942/lrsp-2011-1

[2] Murtazov A. K., Fizika zemli. Kosmicheskie vozdeistviya na geosistemy 2-e izd. per. i dop., Yurait, Moskva, 2021, 268 pp.

[3] Schiermeier Q., “Solar wind hammers the ozone layer”, Nature, 2005 DOI: 10.1038/news050228-12

[4] Quassim M. S., Attia A. F., “Forecasting the global temperature trend according to the predicted solar activity during the next decades”, Memorie della Societa Astronomica Italiana, 76:4 (2005), 1030

[5] Joglekar P. J., Agarwala R. A., “Variation of atmospheric radio noise level with sunspot number”, Proceedings of the IEEE, 61:2 (1973), 252–253 DOI: 10.1109/PROC.1973.9023 | DOI

[6] Weigend A., Huberman B., Rumelhart D. E., “Predicting the Future: A Connectionist Approach”, International Journal of Neural Systems, 01:03 (1990), 193–209 DOI: 10.1142/S0129065790000102 | DOI

[7] Casdagli M., “Chaos and Deterministic versus Stochastic Non-Linear Modelling”, Journal of the Royal Statistical Society. Series B (Methodological), 54:2 (1992), 303–328 | DOI | MR

[8] Mirmomeni M., Lucas C., Araabi B. N., Shafiee M., “Forecasting sunspot numbers with the aid of fuzzy descriptor models”, Space Weather, 5:8 (2007), 1–10 DOI: 10.1029/2006SW000289 | DOI

[9] Dikpati M., Toma G., Gilman P. A., “Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool”, Geophysical Research Letters, 33:5 (2006), 1–4 DOI: 10.1029/2005GL025221 | DOI

[10] Lantos P., Richard O. A., “On the Prediction of Maximum Amplitude for Solar Cycles Using Geomagnetic Precursors”, Solar Physics, 182:1 (1998), 231–246 DOI: 10.1023/A:1005087612053 | DOI

[11] Salvatore M., Morabito F. C., “A New Technique for Solar Activity Forecasting using Recurrent Elman Networks”, Proceedings of International Enformatika Conference, IEC'05, August 26-28, 7 (2005), 68–73

[12] Gholipour A., Abbaspour A., Araabi B. N., Lucas C., “Enhancements in the Prediction of Solar Activity By Locally Linear Model Tree”, Proceedings of the 22nd IASTED International Conference on Modelling, Identification, and Control (MIC 2003), February 10-13, Innsbruck, Austria, 2003, 157–160

[13] Tverdyi D. A., Parovik R. I., “Mathematical modeling in MATLAB of solar activity cycles according to the growth-decline of the Wolf number”, Bulletin KRASEC. Physical and Mathematical Sciences, 41:4 (2022), 47–64 DOI: 10.26117/2079-6641-2022-41-4-47-64 | MR

[14] Tverdyi D. A., Parovik R. I., “Nelokalnaya zadacha Koshi dlya uravneniya rikkati s proizvodnoi drobnogo poryadka kak matematicheskaya model dinamiki solnechnoi aktivnosti”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 93:1 (2020), 57–62 DOI: 10.35330/1991-6639-2020-1-93-57-62

[15] Volterra V., “Sur les équations intégro-différentielles et leurs applications”, Acta Mathematica, 35:1 (1912), 295–356 DOI: 10.1007/BF02418820 | DOI | MR

[16] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam, 2006, 523 pp. | MR | Zbl

[17] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[18] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, Moskva, 2005, 199 pp.

[19] Buraev A. V., “Nekotorye aspekty matematicheskogo modelirovaniya regionalnykh proyavlenii solnechnoi aktivnosti i ikh svyazi s ekstremalnymi geofizicheskimi protsessami”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi Akademii Nauk, 12:1 (2010), 88–90

[20] Postan M. Ya., “Obobschennaya logisticheskaya krivaya: ee svoistva i otsenka parametrov”, Ekonomika i matematicheskie metody, 29:2 (1993), 305–310 | MR

[21] Rzkadkowski G., Sobczak L., “A generalized logistic function and its applications”, Foundations of Management, 12:1 (2020), 85–92 DOI: 10.2478/fman-2020-0007 | DOI

[22] Reid W. T., Riccati differential equations, Academic Press, New York, USA, 1972, 216 pp. | MR | Zbl

[23] Taogetusang S., Li S. M, “New application to Riccati equation”, Chinese Physics B, 19 (2010), 080303 DOI: 10.1088/1674-1056/19/8/080303 | DOI

[24] Gerasimov A. N., “Generalization of linear deformation laws and their application to internal friction problems”, Applied Mathematics and Mechanics, 12 (1948), 529–539 | MR

[25] Caputo M., “Linear models of dissipation whose Q is almost frequency independent – II”, Geophysical Journal International, 13:5 (1967), 529–539 DOI: 10.1111/j.1365-246X.1967.tb02303.x | DOI

[26] Hughes A. J., Grawoig D. E., Statistics: A Foundation for Analysis, Addison Wesley, Boston, 1971, 525 pp. | MR

[27] Chicco D., Warrens M. J., Jurman G., “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation”, PeerJ Computer Scienc, 299 (2021), e623 DOI: 10.7717/peerj-cs.623 | DOI

[28] Cox D. R. Hinkley D. V., Theoretical Statistics, 1st edition, Chapman Hall/CRC, London, 1979, 528 pp. | MR

[29] Kabanikhin S. I., Iskakov K. T., Optimizatsionnye metody resheniya koeffitsientnykh obratnykh zadach, Novosibirskii gosudarstvennyi universitet, Novosibirsk, 2001, 315 pp.

[30] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory, Springer, Berlin, 2013, 373 pp. | MR

[31] Sun H., Chen W., Li C., Chen Y., “Finite difference schemes for variable-order time fractional diffusion equation”, International Journal of Bifurcation and Chaos, 22:04 (2012), 1250085 DOI: 10.1142/S021812741250085X | DOI | MR

[32] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6:1:23 (2022), 1–27 DOI: 10.3390/fractalfract6010023

[33] Tverdyi D. A., Parovik R. I., “Ob effektivnosti parallelnykh algoritmov chislennogo resheniya nekotorykh modelnykh zadach drobnoi dinamiki”, Materialy II Mezhdunarodnogo seminara «Vychislitelnye tekhnologii i prikladnaya matematika», Blagoveschensk, Rossiya, 12 - 16 Iyun, 2023, 210–212 DOI: 10.22250/9785934933921_210

[34] Borzunov S. V., Kurgalin S. D., Flegel A. V., Praktikum po parallelnomu programmirovaniyu: uchebnoe posobie, BKhV, Sankt-Peterburg, 2017, 236 pp.

[35] Sanders J., Kandrot E., CUDA by Example: An Introduction to General-Purpose GPU Programming, Addison-Wesley Professional, London, 2010, 311 pp.

[36] Tverdyi D. A., Parovik R. I., “Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect”, Fractal and Fractional, 6:3:163 (2022), 1–35 DOI: 10.3390/fractalfract6030163 | DOI

[37] Gill P. E., Murray W., Wright M. H., Practical Optimization, SIAM, Philadelphia, 2019, 421 pp. | MR