Fractional model of geoacoustic emission
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 45 (2023) no. 4, pp. 24-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, a fractional dynamic system that describes high-frequency geoacoustic emission with heredity was proposed and investigated. The model is a system of two connected linear oscillators with nonconstant coefficients and Gerasimov-Caputo fractional order derivatives. Each oscillator describes a dislocation source of geoacoustic emission. The model is built on the assumption that interaction between sources occurs only through radiation. The presence of heredity indicates a change in the intensity of such interaction. For a fractional dynamic model with Gerasimov-Caputo derivatives, local initial conditions are valid, i.e. the Cauchy problem is posed. Further in the work, based on the Gerasimov-Caputo approximation of fractional derivatives, a nonlocal explicit finite-difference scheme is constructed for the numerical solution of the Cauchy problem. The numerical solution is visualized. Oscillograms and phase trajectories were constructed using a numerical algorithm for various values of the orders of fractional derivatives in the Maple computer algebra environment. Some interpretation of the simulation results is given.
Keywords: mathematical modeling, fractional dynamic system, phase trajectory, explicit finite-difference, Maple.
Mots-clés : geoacoustic emissions, oscillogram
@article{VKAM_2023_45_4_a1,
     author = {R. I. Parovik},
     title = {Fractional model of geoacoustic emission},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {24--35},
     year = {2023},
     volume = {45},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a1/}
}
TY  - JOUR
AU  - R. I. Parovik
TI  - Fractional model of geoacoustic emission
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 24
EP  - 35
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a1/
LA  - ru
ID  - VKAM_2023_45_4_a1
ER  - 
%0 Journal Article
%A R. I. Parovik
%T Fractional model of geoacoustic emission
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 24-35
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a1/
%G ru
%F VKAM_2023_45_4_a1
R. I. Parovik. Fractional model of geoacoustic emission. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 45 (2023) no. 4, pp. 24-35. http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a1/

[1] Dolgikh G. I. i dr., “Deformatsionnye i akusticheskie predvestniki zemletryasenii”, Doklady AN, 413:1 (2007), 96–100

[2] Marapulets Yu. V. i dr., “Otklik geoakusticheskoi emissii na aktivizatsiyu deformatsionnykh protsessov pri podgotovke zemletryasenii”, Tikhookeanskaya geologiya, 31:6 (2012), 59–67

[3] Kissin I. G., Flyuidy v zemnoi kore: Geofizicheskie i tektonicheskie aspekty, Nauka, M., 2015, 328 pp.

[4] Morgunov V. A., Lyuboshevskii M. N., Fabritsius V. Z., Fabritsius Z. E., “Geoakusticheskii predvestnik Spitakskogo zemletryaseniya”, Vulkanologiya i seismologiya, 1991, no. 4, 104–106

[5] Gregori G. P., Poscolieri M., Paparo G., De Simone S., Rafanelli C., Ventrice G., ““Storms of crustal stress” and AE earthquake precursors”, Natural Hazards and Earth System Sciences, 2010, no. 10, 319–337 DOI: 10.5194/nhess-10-319-2010 | DOI

[6] Iskakov B. A. i dr., “Geoakusticheskaya emissiya pri prokhozhdenii cherez zemnuyu koru vysokoenergeticheskikh myuonov kosmicheskogo proiskhozhdeniya”, Vestnik Permskogo universiteta. Seriya: Fizika, 2021, no. 1, 5-11 | DOI

[7] Bokov V. N., Vorobev V. N., “Izmenchivost geoakusticheskoi emissii i izmeneniya atmosfernoi tsirkulyatsii”, Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2013, no. 32, 43-54

[8] Gavrilov V.A., Morozova Yu.V., Storcheus A.V., “Variatsii urovnya geoakusticheskoi emissii v glubokoi skvazhine G-1 (Kamchatka) i ikh svyaz s seismicheskoi aktivnostyu”, Vulkanologiya i seismologiya, 2006, no. 1, 52–67

[9] Marapulets Yu. V., “Vysokochastotnyi akustoemissionnyi effekt”, Vestnik KRAUNTs. Fiz.-mat. nauki, 10:1 (2015), 44–53 DOI: 10.18454/2079-6641-2015-10-1-44-5

[10] Krylov V. V., Landa P. S., Robsman V. A., “Model razvitiya akusticheskoi emissii kak khaotizatsiya perekhodnykh protsessov v svyazannykh nelineinykh ostsillyatorakh”, Akusticheskii zhurnal, 39:1 (1993), 108–122

[11] Gapeev M. I., Solodchuk A. A., Parovik R. I., “Svyazannye ostsillyatory kak model vysokochastotnoi geoakusticheskoi emissii”, Vestnik KRAUNTs. Fiz.-mat. nauki, 40:3 (2022), 88-100 DOI: 10.26117/2079-6641-2022-40-3-88-100 | DOI | MR

[12] Tristanov A., Lukovenkova O., Marapulets Yu., Kim A., “Improvement of methods for sparse model identification of pulsed geophysical signals”, IEEE \year 2019, 256–260 DOI: 10.23919/SPA.2019.8936817

[13] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977, 384 pp. | MR

[14] Volterra V., Functional theory, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp. | MR

[15] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[16] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[17] Mingazova D. F., Parovik R. I., “Nekotorye aspekty kachestvennogo analiza modeli vysokochastotnoi geoakusticheskoi emissii”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 42:1 (2023), 191-206 DOI: 10.26117/2079-6641-2023-42-1-191-206 | DOI | MR

[18] Parovik R.I., Khaoticheskie i regulyarnye rezhimy drobnykh ostsillyatorov, KAMChATPRESS, Petropavlovsk-Kamchatskii, 2019, 132 pp.