Mots-clés : oscillogram
@article{VKAM_2023_45_4_a0,
author = {R. I. Parovik},
title = {Qualitative analysis of {Selkov's} fractional dynamical system with variable memory using a modified {Test} 0-1 algorithm},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {9--23},
year = {2023},
volume = {45},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a0/}
}
TY - JOUR AU - R. I. Parovik TI - Qualitative analysis of Selkov's fractional dynamical system with variable memory using a modified Test 0-1 algorithm JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2023 SP - 9 EP - 23 VL - 45 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a0/ LA - ru ID - VKAM_2023_45_4_a0 ER -
%0 Journal Article %A R. I. Parovik %T Qualitative analysis of Selkov's fractional dynamical system with variable memory using a modified Test 0-1 algorithm %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2023 %P 9-23 %V 45 %N 4 %U http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a0/ %G ru %F VKAM_2023_45_4_a0
R. I. Parovik. Qualitative analysis of Selkov's fractional dynamical system with variable memory using a modified Test 0-1 algorithm. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 45 (2023) no. 4, pp. 9-23. http://geodesic.mathdoc.fr/item/VKAM_2023_45_4_a0/
[1] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977, 384 pp. | MR
[2] Volterra V., Functional theory, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp. | MR
[3] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[4] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl
[5] Nigmatullin R. R., “Drobnyi integral i ego fizicheskaya interpretatsiya”, TMF, 90:3 (1992), 354–368 | MR | Zbl
[6] Parovik R.I., Khaoticheskie i regulyarnye rezhimy drobnykh ostsillyatorov, KAMChATPRESS, Petropavlovsk-Kamchatskii, 2019, 132 pp.
[7] Parovik R.I., “Issledovanie drobnoi dinamicheskoi sistemy Selkova”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 41:4 (2022), 146–166 DOI: 10.26117/2079-6641-2022-41-4-146-166 | MR
[8] Parovik R.I., “Studies of the Fractional Selkov Dynamical System for Describing the Self-Oscillatory Regime of Microseisms”, Mathematics, 10:22 (2022), 4208 DOI: 10.3390/math10224208 | DOI
[9] Selkov E. E., “Self-oscillations in glycolysis. I. A simple kinetic model”, Eur. J. Biochem., 1968, no. 4, 79–86 | DOI
[10] Makovetskii V. I., Dudchenko I. P., Zakupin A. S., “Avtokolebatelnaya model istochnikov mikroseism”, Geosistemy perekhodnykh zon, 2017, no. 4(1), 37–46
[11] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: A review”, Proc. R. Soc. A R. Soc. Publ., 2020, no. 476, 20190498 DOI: 10.1098/rspa.2019.0498 | DOI | MR | Zbl
[12] Benettin G., Galgani L., Giorgilli A., Strelcyn J. M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory”, Meccanica, 16:1 (1980), 9-20 | DOI
[13] Wolf A., Swift J. B., Swinney H. L., Vastano J. A., “Determining Lyapunov exponents from a time series”, Physica D: nonlinear phenomena, 16:3 (1985), 285-317 | DOI | MR | Zbl
[14] Diethelm K., Ford N. J., Freed A. D., “A predictor-corrector approach for the numerical solution of fractional differential equations”, Nonlinear Dynamics, 29:1-4 (2002), 3-22 DOI: 10.1023/A:1016592219341 | DOI | MR | Zbl
[15] Yang C., Liu F., “A computationally effective predictor-corrector method for simulating fractional order dynamical control system”, ANZIAM Journal, 47 (2005), 168-184 DOI: 10.21914/anziamj.v47i0.1037 | DOI | MR
[16] Garrappa R., “Numerical solution of fractional differential equations: A survey and a software tutorial”, Mathematics, 6:2 (2018), 016 DOI: 10.3390/math6020016 | DOI
[17] Gottwald G. A., Melbourne I., “On the implementation of the 0–1 test for chaos”, SIAM Journal on Applied Dynamical Systems, 8:1 (2009), 129-145 DOI: 10.1137/080718851 | DOI | MR | Zbl
[18] Fouda J. S.A.E., Bodo B., Sabat S. L., Effa J. Y.A., “Modified 0-1 test for chaos detection in oversampled time series observations”, International Journal of Bifurcation and Chaos, 24:5 (2014), 1450063 DOI: 10.1142/S0218127414500631 | DOI | MR | Zbl