Computer simulation of the propagation of a plane electromagnetic wave in a waveguide formed by the Earth's surface and the ionosphere under the condition of inhomogeneous boundary conductivity
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 44 (2023) no. 3, pp. 104-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents the results of computer simulation of the propagation of a plane electromagnetic wave. Lightning discharges are natural sources of pulsed electromagnetic radiation (atmosphere). Atmospheric propagates in the Earth-Ionosphere waveguide as a plane electromagnetic wave with a wide frequency spectrum with an intensity maximum in the range of 4-10 kHz. After earthquakes with magnitudes of the order of 7 or more, the saturation of groundwater with secondary minerals increases, which leads to a local increase in the conductivity of the earth in these areas. What determines the electrophysical properties of the earth, as the parameters of the lower boundary of the Earth-Ionosphere waveguide. Which affect the characteristics of electromagnetic waves propagating in the waveguide. It is assumed that, by studying the parameters of the atmosferic, it is possible to establish the presence of an inhomogeneity in the conductivity of the waveguide wall. Based on the system of Maxwell equations with boundary conditions in the form of a Perfectly matched layer, a mathematical model of the process is set. The boundary conditions of the model determine the region of propagation of an electromagnetic broadband signal as a waveguide with inhomogeneous boundary conductivity. The system of model equations is solved by the numerical Finite-Difference Time-domain method. In order to solve the problem and conduct computer modeling, a software package was developed in MATLAB environment. In order to verify the assumption, a number of computer simulations were carried out. As a result, it is shown that there is a backscattering of electromagnetic wave on the waveguide trace, arising as a consequence of reflection of the wave in its interaction with the inhomogeneity of the conductivity of the lower boundary of the waveguide. It is shown that with the help of mathematical modeling of the process of atmospheric propagation and its interactions with inhomogeneity in the waveguide it is possible to establish the presence of inhomogeneity and its relationship to the characteristics of radiation.
Keywords: mathematical modeling, dynamic processes, Maxwell's equations, atmospheric, plane EM wave, waveguide, conduction inhomogeneity, computer simulation, MATLAB, inverse wave, numerical solution, PML, ABC.
Mots-clés : FDTD
@article{VKAM_2023_44_3_a7,
     author = {D. A. Tvyordyj and E. I. Malkin},
     title = {Computer simulation of the propagation of a plane electromagnetic wave in a waveguide formed by the {Earth's} surface and the ionosphere under the condition of inhomogeneous boundary conductivity},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {104--120},
     year = {2023},
     volume = {44},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a7/}
}
TY  - JOUR
AU  - D. A. Tvyordyj
AU  - E. I. Malkin
TI  - Computer simulation of the propagation of a plane electromagnetic wave in a waveguide formed by the Earth's surface and the ionosphere under the condition of inhomogeneous boundary conductivity
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 104
EP  - 120
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a7/
LA  - ru
ID  - VKAM_2023_44_3_a7
ER  - 
%0 Journal Article
%A D. A. Tvyordyj
%A E. I. Malkin
%T Computer simulation of the propagation of a plane electromagnetic wave in a waveguide formed by the Earth's surface and the ionosphere under the condition of inhomogeneous boundary conductivity
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 104-120
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a7/
%G ru
%F VKAM_2023_44_3_a7
D. A. Tvyordyj; E. I. Malkin. Computer simulation of the propagation of a plane electromagnetic wave in a waveguide formed by the Earth's surface and the ionosphere under the condition of inhomogeneous boundary conductivity. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 44 (2023) no. 3, pp. 104-120. http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a7/

[1] Koronczay, D., Lichtenberger, J.,Clilverd, M. A., Rodger, C. J., Lotz, S.I., Sannikov, D. V., et al., “The source regions of whistlers.”, Journal of Geophysical Research: SpacePhysics, 124 (2019), 5082–5096 DOI: 10.1029/2019JA026559 | DOI

[2] Lichtenberger J., Ferencz C., Bodnar L., Hamar D., Steinbach P., “Automatic whistler detector and analyzer system: Automatic whistler detector”, J. Geophys. Res., 113:A12 (2008) DOI: 10.1029/2008JA013467

[3] Storey L. R. O., “An investigation of whistling atmospherics”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 246:908 (1953), 113–141 DOI: 10.1098/rsta.1953.0011

[4] Alpert Ya. L., Guseva E. G., Fligel D. S., Rasprostranenie nizkochastotnykh elektromagnitnykh voln v volnovode Zemlya - ionosfera, Nauka, Moskva, 1967, 123 pp.

[5] Budden K. G., Eve M., “Degenerate modes in the Earth-ionosphere waveguide”, Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 342:1629 (1975), 175–190 DOI: 10.1098/rspa.1975.0019

[6] Milton K., Schwinger J., Electromagnetic Radiation: Variational Methods, Waveguides and Accelerators, Springer, New York, 2006, 357 pp. | MR

[7] Sarkar T. K., Mailloux R. J., Oliner A. A., Palma M. S., Sengupta D. L., “The Evolution of Electromagnetic Waveguides: From Hollow Metallic Guides to Microwave Integrated Circuits”, History of Wireless, chapter 16, John Wiley Sons, New-York, 2006, 543–566 DOI: 10.1002/0471783021.ch16 | DOI

[8] Spies K. P., Wait J. R., Mode calculations for VLF propagation in the earth-ionosphere waveguide, U.S. Dept. of Commerce, Washington, USA, 1961, 116 pp. | MR

[9] Wait J. R., Electromagnetic Waves in Stratified Media, Oxford University Press, Oxford, UK, 1970, 384 pp.

[10] Helliwell R. A., Whistlers and Related Ionospheric Phenomena, Dover Publications, New York, 2006, 368 pp.

[11] Helliwell R. A., Pytte A., “Whistlers and Related Ionospheric Phenomena”, American Journal of Physics, 34:1 (1966), 81–81 DOI: 10.1119/1.1972800 | DOI

[12] Field Jr E. C., Gayer S. J. Dambrosio B. P., “ELF propagation in the presence of nonstratified ionospheric disturbances”, Final Report, May 1979 - Feb. 1980 Pacific-Sierra Research Corp., Santa Monica, CA., 1:1 (1980) | Zbl

[13] Lysak R. L., Yoshikawa A., “Resonant Cavities and Waveguides in the Ionosphere and Atmosphere”: Magnetospheric ULF Waves: Synthesis and New Directions, American Geophysical Union, 2006, 289–306 DOI: 10.1029/169GM19 | DOI

[14] Kryukovsky A., Kutuza B., Stasevich V., Rastyagaev D., “Ionospheric Inhomogeneities and Their Influences on the Earth’s Remote Sensing from Space”, Remote Sensing, 14:21:5469 (2022), 1–20 DOI: 10.3390/rs14215469 | DOI

[15] Kopylova G. N., Guseva N. V., Kopylova Yu. G., Boldina S. V., “Khimicheskii sostav podzemnykh vod rezhimnykh vodoproyavlenii Petropavlovskogo geodinamicheskogo poligona, Kamchatka: tipizatsiya i effekty silnykh zemletryasenii”, Journal of Volcanology and Seismology, 2018, no. 4, 43–62 DOI: 10.1134/S0203030618040041

[16] Chiodini G., Cardellini C., Di Luccio F., Selva J., Frondini F., Caliro, S., Rosiello A., Beddini G., Ventura G., “Correlation between tectonic $CO_2$ Earth degassing and seismicity is revealed by a 10-year record in the Apennines, Italy”, Science Advances, 6:35 (2020), e623 DOI: 10.1126/sciadv.abc2938 | DOI

[17] Maxwell J. C., “A dynamical theory of the electromagnetic field”, Philosophical Transactions of the Royal Society of London, 155 (1865), 459–512 DOI: 10.1098/rstl.1865.0008 | DOI | MR

[18] Jackson J. D., Classical Electrodynamics. 3rd Edition, Wiley, New-York, USA, 1998, 832 pp. | MR

[19] Yee K., “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media”, IEEE Transactions on Antennas and Propagation, 14:3 (1966), 302–307 DOI: 10.1109/TAP.1966.1138693 | DOI | MR | Zbl

[20] Wang Z., Zhou C., Zhao S., Xu X., Liu M., Liu Y., Liao L., Shen X., “Numerical Study of Global ELF Electromagnetic Wave Propagation with Respect to Lithosphere–Atmosphere–Ionosphere Coupling”, Remote Sensing, 13:20:4107 (2021), 1–27 DOI: 10.3390/rs13204107

[21] Taflove A., Hagness S. C., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Massachusetts, USA, 2005, 1038 pp. | MR

[22] Elsherbeni A. Z., Demir V., The finite-difference time-domain method for electromagnetics with MATLAB simulations, SciTech Publishing, Raleigh, USA, 2015, 560 pp.

[23] Tverdyi D. A., Malkin E. I., Parovik R. I., “Mathematical modeling of the propagation of a plane electromagnetic wave in a strip waveguide with inhomogeneous boundary conductivity”, Bulletin KRASEC. Physical and Mathematical Sciences, 41:4 (2022), 66–88 DOI: 10.26117/2079-6641-2022-41-4-66-88 | MR

[24] Lindell I. V., Sihvola A. H., “Perfect Electromagnetic Conductor”, Journal of Electromagnetic Waves and Applications, 19:7 (2005), 861–869 DOI: 10.1163/156939305775468741 | DOI | MR

[25] Berenger J. P., “A perfectly matched layer for the absorption of electromagnetic waves”, Journal of Computational Physics, 114:2 (1994), 185–200 DOI: 10.1006/jcph.1994.1159 | DOI | MR | Zbl

[26] Nickelson L., Electromagnetic Theory and Plasmonics for Engineers, Springer, Singapore, 2018, 749 pp.

[27] Berenger J. P., “Perfectly matched layer for the FDTD solution of wave-structure interaction problems”, IEEE Transactions on Antennas and Propagation, 44:1 (1996), 110–117 DOI: 10.1109/8.477535 | DOI

[28] Andrew W. V., Balanis C. A. Tirkas P. A., “Comparison of the Berenger perfectly matched layer and the Lindman higher-order ABC’s for the FDTD method”, IEEE Microwave and Guided Wave Letters, 5:6 (1995), 192–194 DOI: 10.1109/75.386128 | DOI

[29] Veihl J. C., Mittra R., “Efficient implementation of Berenger’s perfectly matched layer (PML) for finite-difference time-domain mesh truncation”, IEEE Transactions on Antennas and Propagation, 6:2 (1996), 94–96 DOI: 10.1109/75.482000