Mots-clés : FDTD
@article{VKAM_2023_44_3_a7,
author = {D. A. Tvyordyj and E. I. Malkin},
title = {Computer simulation of the propagation of a plane electromagnetic wave in a waveguide formed by the {Earth's} surface and the ionosphere under the condition of inhomogeneous boundary conductivity},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {104--120},
year = {2023},
volume = {44},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a7/}
}
TY - JOUR AU - D. A. Tvyordyj AU - E. I. Malkin TI - Computer simulation of the propagation of a plane electromagnetic wave in a waveguide formed by the Earth's surface and the ionosphere under the condition of inhomogeneous boundary conductivity JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2023 SP - 104 EP - 120 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a7/ LA - ru ID - VKAM_2023_44_3_a7 ER -
%0 Journal Article %A D. A. Tvyordyj %A E. I. Malkin %T Computer simulation of the propagation of a plane electromagnetic wave in a waveguide formed by the Earth's surface and the ionosphere under the condition of inhomogeneous boundary conductivity %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2023 %P 104-120 %V 44 %N 3 %U http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a7/ %G ru %F VKAM_2023_44_3_a7
D. A. Tvyordyj; E. I. Malkin. Computer simulation of the propagation of a plane electromagnetic wave in a waveguide formed by the Earth's surface and the ionosphere under the condition of inhomogeneous boundary conductivity. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 44 (2023) no. 3, pp. 104-120. http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a7/
[1] Koronczay, D., Lichtenberger, J.,Clilverd, M. A., Rodger, C. J., Lotz, S.I., Sannikov, D. V., et al., “The source regions of whistlers.”, Journal of Geophysical Research: SpacePhysics, 124 (2019), 5082–5096 DOI: 10.1029/2019JA026559 | DOI
[2] Lichtenberger J., Ferencz C., Bodnar L., Hamar D., Steinbach P., “Automatic whistler detector and analyzer system: Automatic whistler detector”, J. Geophys. Res., 113:A12 (2008) DOI: 10.1029/2008JA013467
[3] Storey L. R. O., “An investigation of whistling atmospherics”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 246:908 (1953), 113–141 DOI: 10.1098/rsta.1953.0011
[4] Alpert Ya. L., Guseva E. G., Fligel D. S., Rasprostranenie nizkochastotnykh elektromagnitnykh voln v volnovode Zemlya - ionosfera, Nauka, Moskva, 1967, 123 pp.
[5] Budden K. G., Eve M., “Degenerate modes in the Earth-ionosphere waveguide”, Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 342:1629 (1975), 175–190 DOI: 10.1098/rspa.1975.0019
[6] Milton K., Schwinger J., Electromagnetic Radiation: Variational Methods, Waveguides and Accelerators, Springer, New York, 2006, 357 pp. | MR
[7] Sarkar T. K., Mailloux R. J., Oliner A. A., Palma M. S., Sengupta D. L., “The Evolution of Electromagnetic Waveguides: From Hollow Metallic Guides to Microwave Integrated Circuits”, History of Wireless, chapter 16, John Wiley Sons, New-York, 2006, 543–566 DOI: 10.1002/0471783021.ch16 | DOI
[8] Spies K. P., Wait J. R., Mode calculations for VLF propagation in the earth-ionosphere waveguide, U.S. Dept. of Commerce, Washington, USA, 1961, 116 pp. | MR
[9] Wait J. R., Electromagnetic Waves in Stratified Media, Oxford University Press, Oxford, UK, 1970, 384 pp.
[10] Helliwell R. A., Whistlers and Related Ionospheric Phenomena, Dover Publications, New York, 2006, 368 pp.
[11] Helliwell R. A., Pytte A., “Whistlers and Related Ionospheric Phenomena”, American Journal of Physics, 34:1 (1966), 81–81 DOI: 10.1119/1.1972800 | DOI
[12] Field Jr E. C., Gayer S. J. Dambrosio B. P., “ELF propagation in the presence of nonstratified ionospheric disturbances”, Final Report, May 1979 - Feb. 1980 Pacific-Sierra Research Corp., Santa Monica, CA., 1:1 (1980) | Zbl
[13] Lysak R. L., Yoshikawa A., “Resonant Cavities and Waveguides in the Ionosphere and Atmosphere”: Magnetospheric ULF Waves: Synthesis and New Directions, American Geophysical Union, 2006, 289–306 DOI: 10.1029/169GM19 | DOI
[14] Kryukovsky A., Kutuza B., Stasevich V., Rastyagaev D., “Ionospheric Inhomogeneities and Their Influences on the Earth’s Remote Sensing from Space”, Remote Sensing, 14:21:5469 (2022), 1–20 DOI: 10.3390/rs14215469 | DOI
[15] Kopylova G. N., Guseva N. V., Kopylova Yu. G., Boldina S. V., “Khimicheskii sostav podzemnykh vod rezhimnykh vodoproyavlenii Petropavlovskogo geodinamicheskogo poligona, Kamchatka: tipizatsiya i effekty silnykh zemletryasenii”, Journal of Volcanology and Seismology, 2018, no. 4, 43–62 DOI: 10.1134/S0203030618040041
[16] Chiodini G., Cardellini C., Di Luccio F., Selva J., Frondini F., Caliro, S., Rosiello A., Beddini G., Ventura G., “Correlation between tectonic $CO_2$ Earth degassing and seismicity is revealed by a 10-year record in the Apennines, Italy”, Science Advances, 6:35 (2020), e623 DOI: 10.1126/sciadv.abc2938 | DOI
[17] Maxwell J. C., “A dynamical theory of the electromagnetic field”, Philosophical Transactions of the Royal Society of London, 155 (1865), 459–512 DOI: 10.1098/rstl.1865.0008 | DOI | MR
[18] Jackson J. D., Classical Electrodynamics. 3rd Edition, Wiley, New-York, USA, 1998, 832 pp. | MR
[19] Yee K., “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media”, IEEE Transactions on Antennas and Propagation, 14:3 (1966), 302–307 DOI: 10.1109/TAP.1966.1138693 | DOI | MR | Zbl
[20] Wang Z., Zhou C., Zhao S., Xu X., Liu M., Liu Y., Liao L., Shen X., “Numerical Study of Global ELF Electromagnetic Wave Propagation with Respect to Lithosphere–Atmosphere–Ionosphere Coupling”, Remote Sensing, 13:20:4107 (2021), 1–27 DOI: 10.3390/rs13204107
[21] Taflove A., Hagness S. C., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Massachusetts, USA, 2005, 1038 pp. | MR
[22] Elsherbeni A. Z., Demir V., The finite-difference time-domain method for electromagnetics with MATLAB simulations, SciTech Publishing, Raleigh, USA, 2015, 560 pp.
[23] Tverdyi D. A., Malkin E. I., Parovik R. I., “Mathematical modeling of the propagation of a plane electromagnetic wave in a strip waveguide with inhomogeneous boundary conductivity”, Bulletin KRASEC. Physical and Mathematical Sciences, 41:4 (2022), 66–88 DOI: 10.26117/2079-6641-2022-41-4-66-88 | MR
[24] Lindell I. V., Sihvola A. H., “Perfect Electromagnetic Conductor”, Journal of Electromagnetic Waves and Applications, 19:7 (2005), 861–869 DOI: 10.1163/156939305775468741 | DOI | MR
[25] Berenger J. P., “A perfectly matched layer for the absorption of electromagnetic waves”, Journal of Computational Physics, 114:2 (1994), 185–200 DOI: 10.1006/jcph.1994.1159 | DOI | MR | Zbl
[26] Nickelson L., Electromagnetic Theory and Plasmonics for Engineers, Springer, Singapore, 2018, 749 pp.
[27] Berenger J. P., “Perfectly matched layer for the FDTD solution of wave-structure interaction problems”, IEEE Transactions on Antennas and Propagation, 44:1 (1996), 110–117 DOI: 10.1109/8.477535 | DOI
[28] Andrew W. V., Balanis C. A. Tirkas P. A., “Comparison of the Berenger perfectly matched layer and the Lindman higher-order ABC’s for the FDTD method”, IEEE Microwave and Guided Wave Letters, 5:6 (1995), 192–194 DOI: 10.1109/75.386128 | DOI
[29] Veihl J. C., Mittra R., “Efficient implementation of Berenger’s perfectly matched layer (PML) for finite-difference time-domain mesh truncation”, IEEE Transactions on Antennas and Propagation, 6:2 (1996), 94–96 DOI: 10.1109/75.482000