Research of stress-strain state of geo-environment by emanation methods on the example of $\alpha$(t)-model of radon transport
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 44 (2023) no. 3, pp. 86-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Continuous monitoring of variations in the volumetric activity of radon in order to search for its anomalous values preceding seismic events is one of the effective techniques for studying the stress-strain state of the geosphere. We propose a Cauchy problem describing the radon transport taking into account its accumulation in the chamber and the presence of the memory effect of the geo-environment. The model equation is a nonlinear differential equation with non-constant coefficients with a derivative in the sense of Gerasimov-Kaputo of fractional variable order. In the course of mathematical modeling, in MATLAB environment, of radon transport by the ereditary $\alpha$(t)-model a good agreement with experimental data was obtained. This indicates that the ereditary $\alpha$(t)-model of radon transport is more flexible, which allows it to describe various anomalous variations in the values of volumetric activity of radon due to the stress-strain state of the geosphere. It is shown that the order of the fractional derivative can be responsible for the intensity of the radon transfer process associated with the characteristics of the geo-environment. It is shown that due to the order of the fractional derivative, as well as quadratic nonlinearity in the model equation, the results of numerical modeling give a better approximation of the experimental data of radon monitoring than by classical models.
Keywords: mathematical modeling, nonlinear equations, saturation effect, fractional derivatives, hereditarity, memory effects, nonlocality in time, radon volumetric activity, stress-strain state, geo-environment, earthquake precursors.
Mots-clés : fractional equations
@article{VKAM_2023_44_3_a6,
     author = {D. A. Tvyordyj and E. O. Makarov and R. I. Parovik},
     title = {Research of stress-strain state of geo-environment by emanation methods on the example of $\alpha$(t)-model of radon transport},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {86--104},
     year = {2023},
     volume = {44},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a6/}
}
TY  - JOUR
AU  - D. A. Tvyordyj
AU  - E. O. Makarov
AU  - R. I. Parovik
TI  - Research of stress-strain state of geo-environment by emanation methods on the example of $\alpha$(t)-model of radon transport
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 86
EP  - 104
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a6/
LA  - ru
ID  - VKAM_2023_44_3_a6
ER  - 
%0 Journal Article
%A D. A. Tvyordyj
%A E. O. Makarov
%A R. I. Parovik
%T Research of stress-strain state of geo-environment by emanation methods on the example of $\alpha$(t)-model of radon transport
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 86-104
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a6/
%G ru
%F VKAM_2023_44_3_a6
D. A. Tvyordyj; E. O. Makarov; R. I. Parovik. Research of stress-strain state of geo-environment by emanation methods on the example of $\alpha$(t)-model of radon transport. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 44 (2023) no. 3, pp. 86-104. http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a6/

[1] Rudakov V. P., Emanatsionnyi monitoring geosred i protsessov, Nauchnyi mir, Moskva, 2009, 175 pp.

[2] Neri M., Giammanco S., Ferrera E., Patane G., Zanon V., “Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: The example of Mt. Etna (Italy)”, Journal of environmental radioactivity, 2011, 863–870 DOI: 10.1016/j.jenvrad.2011.05.002 | DOI

[3] Barberio, M. D., Gori, F., Barbieri, M., Billi, A., Devoti, R., Doglioni, C., Petitta, M., Riguzzi, F., Rusi, S., “Diurnal and Semidiurnal Cyclicity of Radon (222Rn) in Groundwater, Giardino Spring, Central Apennines, Italy”, Water, 10(9):1276 (2018) DOI: 10.3390/w10091276

[4] Imme G., Morelli D., “Radon as earthquake precursor”, In book: Earthquake Research and Analysis - Statistical Studies, Observations and Planning, 2012, 143–160 DOI: 10.5772/29917

[5] Hauksson E., “Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis”, Journal of Geophysical Research: Solid Earth, 86:B10 (1981), 9397–9410 DOI: 10.1029/JB086iB10p09397 | DOI

[6] Cicerone R. D., Ebel J. E., Beitton J., “A systematic compilation of earthquake precursors”, Tectonophysics, 476:3-4 (2009), 371-396 DOI: 10.1016/j.tecto.2009.06.008 | DOI

[7] Petraki E., Nikolopoulos D., Panagiotaras D., Cantzos D., Yannakopoulos P. et al., “Radon-222: A Potential Short-Term Earthquake Precursor”, Earth Science Climatic Change, 6:6 (2015) DOI: 10.4172/2157-7617.100028 | MR

[8] Parovik R. I., Matematicheskoe modelirovanie neklassicheskoi teorii emanatsionnogo metoda, Kamchatskii gosudarstvennyi universitet im. Vitusa Beringa, Petropavlovsk-Kamchatskii, 2014, 80 pp.

[9] Ponamarev A. S., “Fraktsionirovanie v gidroterme kak potentsialnaya vozmozhnost formirovaniya predvestnikov zemletryasenii”, Geokhimiya, 1989, no. 5, 714–724

[10] Barsukov V. L., Varshal G. M., Garanin A. V., Zamokina N. S., “Znachenie gidrogeokhimicheskikh metodov dlya kratkosrochnogo prognoza zemletryasenii”, Gidrogeokhimicheskie predvestniki zemletryasenii, Nauka, Moskva, 1985, 3–16

[11] Varhegyi A., Baranyi I., Somogyi G. A., “Model for the vertical subsurface radon transport in «geogas» microbubbles”, Geophys. Transactions, 32:3 (1986), 235–253

[12] King C. Y., “Gas-geochemical approaches to earthquake prediction”, Isotopic geochemical precursors of earthquakes and volcanic eruption, Proceedings of an Advisory Group Meeting held in Vienna (Vienna, September 9–12), International atomic energy agency, Vienna, 1991, 22–36

[13] Dubinchuk V. T., “Radon as a precursor of earthquakes”, Isotopic geochemical precursors of earthquakes and volcanic eruption, Proceedings of an Advisory Group Meeting held in Vienna (Vienna, September 9–12), International atomic energy agency, Vienna, 1991, 9–22

[14] Novikov G. F., Radiometricheskaya razvedka, Nauka, Leningrad, 1989, 407 pp.

[15] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam, 2006, 523 pp. | MR | Zbl

[16] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[17] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory, Springer, Berlin, 2013, 373 pp. | MR

[18] Tverdyi D. A., Parovik R. I., Makarov E. O., Firstov P. P., “Research of the process of radon accumulation in the accumulating chamber taking into account the nonlinearity of its entrance”, E3S Web Conference, 196:02027 (2020), 1–6 DOI: 10.1051/e3sconf/202019602027

[19] Tverdyi D. A., Parovik R. I., “Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect”, Fractal and Fractional, 6(3):163 (2022), 1–35 DOI: 10.3390/fractalfract6030163

[20] Makarov E. O. Firstov P. P., Voloshin V. N., “Instrumental complex for registration concentration of subsurface gas to find precursory anomalies strong earthquake of Southern Kamchatka”, Seismic instruments, 48:2 (2012), 5–14

[21] Firstov P. P., Makarov E. O., Dinamika podpochvennogo radona na Kamchatke i silnye zemletryaseniya, Kamchatskii gosudarstvennyi universitet im. Vitusa Beringa, Petropavlovsk-Kamchatskii, 2018, 148 pp.

[22] Firstov P. P., Makarov E. O., Glukhova I. P., Budilov D. I., Isakevich D. V., “Poisk predvestnikovykh anomalii silnykh zemletryasenii po dannym monitoringa podpochvennykh gazov na Petropavlovsk-Kamchatskom geodinamicheskom poligone”, Geosistemy perekhodnykh zon, 2:1 (2018), 16–32 DOI: 10.30730/2541-8912.2018.2.1.016-032

[23] Firstov P. P., Rudakov V. P., “Rezultaty registratsii podpochvennogo radona v 1997–2000 gg. na Petropavlovsk-Kamchatskom geodinamicheskom poligone”, Vulkanologiya i seismologiya, 2003, no. 1, 26–41

[24] Vasilyev A. V., Zhukovsky M. V., “Determination of mechanisms and parameters which affect radon entry into a room”, Journal of Environmental Radioactivity, 124 (2013), 185–190 DOI: 10.1016/j.jenvrad.2013.04.014 | DOI

[25] Parovik R. I., Shevtsov B. M., “Radon transfer processes in fractional structure medium”, Mathematical Models and Computer Simulations, 2:2 (2010), 180–185 DOI: 10.1134/S2070048210020055 | DOI

[26] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, Moskva, 2005, 199 pp.

[27] Parovik R. I.,, “Mathematical modeling of radon sub diffusion into the cylindrical layer in ground”, Life Science Journal, 11:9 (2015), 281–283

[28] Volterra V., Functional theory, integral and integro-differential equations, Science, Mossow, 1982 | MR

[29] Gerasimov A. N., “Generalization of linear deformation laws and their application to internal friction problems”, Applied Mathematics and Mechanics, 12 (1948), 529–539 | MR

[30] Caputo M., “Linear models of dissipation whose Q is almost frequency independent – II”, Geophysical Journal International, 13:5 (1967), 529–539 DOI: 10.1111/j.1365-246X.1967.tb02303.x | DOI

[31] Rekhviashvili S. Sh., Pskhu A. V., “Drobnyi ostsillyator s eksponentsialno-stepennoi funktsiei pamyati”, Pisma v ZhTF, 48:7 (2022) DOI: 10.21883/PJTF.2022.07.52290.19137

[32] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: a review”, Proceedings of the Royal Society A, 476:2234 (2020), 20190498 DOI: 10.1098/rspa.2019.0498 | DOI | MR

[33] Coimbra C. F. M., “Mechanics with variable-order differential operators”, Annalen der Physik, 12:11–12 (2003), 692–703 DOI: 10.1002/andp.200310032 | DOI | MR | Zbl

[34] Ortigueira M. D., Valerio D., Machado J. T., “Variable order fractional systems”, Communications in Nonlinear Science and Numerical Simulation, 71 (2019), 231–243 DOI: 10.1016/j.cnsns.2018.12.003 | DOI | MR | Zbl

[35] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6(1):23 (2022), 1–27 DOI: 10.3390/fractalfract6010023

[36] Tvyordyj D. A., “Hereditary Riccati equation with fractional derivative of variable order”, Journal of Mathematical Sciences, 253:4 (2021), 564–572 DOI: 10.1007/s10958-021-05254-0 | DOI | Zbl

[37] Rzkadkowski G., Sobczak L., “A generalized logistic function and its applications”, Foundations of Management, 12:1 (2020), 85–92 DOI: 10.2478/fman-2020-0007 | DOI

[38] Johnston F. R., Boyland J. E., Meadows M., Shale E., “Some properties of a simple moving average when applied to forecasting a time series”, Journal of the Operational Research Society, 50:12 (1999), 1267–1271 DOI: 10.1057/palgrave.jors.2600823 | DOI | Zbl