@article{VKAM_2023_44_3_a5,
author = {R. I. Parovik},
title = {Implementation of the modified {Test} 0-1 algorithm for the analysis of chaotic modes of the fractional {Duffing} oscillator},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {67--85},
year = {2023},
volume = {44},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a5/}
}
TY - JOUR AU - R. I. Parovik TI - Implementation of the modified Test 0-1 algorithm for the analysis of chaotic modes of the fractional Duffing oscillator JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2023 SP - 67 EP - 85 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a5/ LA - ru ID - VKAM_2023_44_3_a5 ER -
%0 Journal Article %A R. I. Parovik %T Implementation of the modified Test 0-1 algorithm for the analysis of chaotic modes of the fractional Duffing oscillator %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2023 %P 67-85 %V 44 %N 3 %U http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a5/ %G ru %F VKAM_2023_44_3_a5
R. I. Parovik. Implementation of the modified Test 0-1 algorithm for the analysis of chaotic modes of the fractional Duffing oscillator. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 44 (2023) no. 3, pp. 67-85. http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a5/
[1] Lichtenberg A. J., Lieberman M. A., Regular and chaotic dynamics, v. 38, Springer Science Business Media, New York, 2013, 692 pp. DOI:10.1007/978-1-4757-2184-3 | MR
[2] Petras I, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, Berlin, 2011, 218 pp. DOI:10.1007/978-3-642-18101-6 | MR | Zbl
[3] Volterra V., Functional theory, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp. | MR
[4] Gottwald G. A., Melbourne I., “Testing for chaos in deterministic systems with noise”, Physica D: Nonlinear Phenomena, 212:1-2 (2005), 100-110 DOI:10.1016/j.physd.2005.09.011 | DOI | MR | Zbl
[5] Hu J., Tung W. W., Gao J., Cao Y., “Reliability of the 0-1 test for chaos”, Physical Review E, 72:5 (2005), 056207 DOI:10.1103/PhysRevE.72.056207 | DOI
[6] Falconer I., Gottwald G. A., Melbourne I., Wormnes K., “Application of the 0-1 test for chaos to experimental data”, SIAM Journal on Applied Dynamical Systems, 6:2 (2007), 395-402 DOI:10.1137/060672571 | DOI | MR | Zbl
[7] Gottwald G. A., Melbourne I., “On the implementation of the 0–1 test for chaos”, SIAM Journal on Applied Dynamical Systems, 8:1 (2009), 129-145 DOI:10.1137/080718851 | DOI | MR | Zbl
[8] Gottwald G. A., Melbourne I., “The 0-1 test for chaos: A review”, Chaos detection and predictability, 2016, 221-247 DOI:10.1007/s40430-015-0453-y | DOI
[9] Marszalek W., Walczak M., Sadecki J., “Testing deterministic chaos: Incorrect results of the 0–1 test and how to avoid them”, IEEE Access, 7 (2019), 183245-183251 DOI:10.1109/ACCESS.2019.2960378 | DOI
[10] Walczak M., Marszalek W., Sadecki J., “Using the 0-1 test for chaos in nonlinear continuous systems with two varying parameters: Parallel computations”, IEEE Access, 7 (2019), 154375-154385 DOI:10.1109/ACCESS.2019.2948989 | DOI
[11] Ouannas A., Khennaoui A. A., Momani S., Grassi G., Pham V. T., El-Khazali, R., Vo Hoang D., “A quadratic fractional map without equilibria: Bifurcation, 0–1 test, complexity, entropy, and control”, Electronics, 9:5 (2020), 748 DOI:10.3390/electronics9050748 | DOI
[12] Fouda J. S.A.E., Bodo B., Sabat S. L., Effa J. Y., “A modified 0-1 test for chaos detection in oversampled time series observations”, International Journal of Bifurcation and Chaos, 24:5 (2014), 1450063 DOI:10.1142/S0218127414500631 | DOI | MR | Zbl
[13] Wontchui T. T., Effa J. Y., Fouda H. P. E., Fouda, J. S. A. E., “Dynamical behavior of Peter-De-Jong map using the modified (0-1) and 3ST tests for chaos. Annual Review of Chaos Theory”, Bifurcations and Dynamical Systems, 7, 1-21
[14] Kim V., Parovik R., “Mathematical model of fractional Duffing oscillator with variable memory”, Mathematics, 8:11 (2020) DOI:10.3390/math8112063
[15] Kim V., Parovik R., “Application of the Explicit Euler Method for Numerical Analysis of a Nonlinear Fractional Oscillation Equation”, Fractal and Fractional, 6:5 (2022) DOI:10.3390/fractalfract6050274 | DOI
[16] Kim V., Parovik R., “Some aspects of the numerical analysis of a fractional duffing oscillator with a fractional variable order derivative of the Riemann-Liouville type”, AIP Conference Proceedings, 2467 (2022) DOI:10.1063/5.0092344
[17] Kim V., Parovik R., “Implicit finite-difference scheme for a Duffing oscillator with a derivative of variable fractional order of the Riemann-Liouville type”, Mathematics, 11:3 (2023) DOI:10.3390/math11030558
[18] Kovacic I., Brennan M. J., The Duffing equation: nonlinear oscillators and their behaviour, John Wiley Sons, New York, 2011, 623 pp. | MR | Zbl
[19] Coimbra C. F. M., “Mechanics with variable-order differential operators”, Annalen der Physik, 12:11–12 (2003), 692–703 DOI:10.1002/andp.200310032 | DOI | MR | Zbl
[20] Ortigueira M. D., Valerio D., Machado J. T., “Variable order fractional systems”, Communications in Nonlinear Science and Numerical Simulation, 71 (2019), 231–243 DOI:10.1016/j.cnsns.2018.12.003 | DOI | MR | Zbl
[21] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: a review”, Proceedings of the Royal Society A, 476:2234 (2020), 20190498 DOI:10.1098/rspa.2019.0498 | DOI | MR | Zbl
[22] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.
[23] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, v. 204, Elsevier Science Limited, Amsterdam, 2006, 523 pp. | MR | Zbl
[24] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers. Background and Theory, v. I, Springer, Berlin, 2013, 373 pp. DOI:10.1007/978-3-642-33911-0 | MR | Zbl
[25] Syta A., Litak G., Lenci, S., Scheffler M., “Chaotic vibrations of the Duffing system with fractional damping”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24:1 (2014) DOI:10.1063/1.4861942 | DOI | MR | Zbl
[26] Xin B., Li Y., “0-1 Test for Chaos in a Fractional Order Financial System with Investment Incentive”, Abstract and Applied Analysis, 2013 (2013), 876298 DOI:10.1155/2013/876298 | MR | Zbl
[27] Diethelm K., Ford N. J., Freed A. D., “A predictor-corrector approach for the numerical solution of fractional differential equations”, Nonlinear Dynamics, 29:1-4 (2002), 3-22 DOI:10.1023/A:1016592219341 | DOI | MR | Zbl
[28] Yang C., Liu F., “A computationally effective predictor-corrector method for simulating fractional order dynamical control system”, ANZIAM Journal, 47 (2005), 168-184 DDOI:10.21914/anziamj.v47i0.1037 | DOI | MR
[29] Garrappa R., “Numerical solution of fractional differential equations: A survey and a software tutorial”, Mathematics, 6:2 (2018), 016 DOI:10.3390/math6020016 | DOI
[30] Parovik R. I., Yakovleva T. P., “Construction of maps for dynamic modes and bifurcation diagrams in nonlinear dynamics using the Maple computer mathematics software package”, Journal of Physics: Conference Series, 2373 (2022), 52022 DOI:10.1088/1742-6596/2373/5/052022 | DOI | MR