On a сlass of non-local boundary value problems for the heat equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 44 (2023) no. 3, pp. 30-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Non-local boundary value problems for parabolic equations, including the equations of thermal conductivity, have been the object of research for a long time. Interest in such problems is caused by the need for further development of the theory of boundary value problems with displacement (Nakhushev's problems), as well as in connection with their numerous applications. This article is devoted to the study of the question of the unambiguous solvability of one class of nonlocal boundary value problems for the heat equation. The problem of finding a regular solution of the thermal conductivity equation with a fractional Riemann – Liouville derivative under boundary conditions is considered. The Cauchy problem for an equation equivalent to the original equation is considered, and it is proved that the boundary value problem under consideration is reduced to the first boundary value problem for the heat equation, provided that the Cauchy problem has a unique solution in the class of functions satisfying the conditions of A. N. Tikhonov. In this case, the solution is represented as an integral equation containing the Barrett function in the kernel. Also, by reducing to a system of differential equations with a fractional Riemann-Liouville derivative, the question of the uniqueness and existence of a solution to the problem is solved when the values of the solution at the other end are in the condition. The results obtained in this work will serve as a basis for further research of nonlocal boundary value problems for parabolic differential equations underlying mathematical modeling of processes in systems with fractal structure, as well as the development of the theory of fractional differential equations.
Keywords: class of nonlocal boundary value problems, Tikhonov conditions, regular solution, Cauchy problem, homogeneous problem, fractional differentiation operator, fractional differential equations.
@article{VKAM_2023_44_3_a2,
     author = {F. M. Nakhusheva and M. A. Kerefov and S.Kh. Gekkieva and M. M. Karmokov},
     title = {On a {\cyrs}lass of non-local boundary value problems for the heat equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {30--38},
     year = {2023},
     volume = {44},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a2/}
}
TY  - JOUR
AU  - F. M. Nakhusheva
AU  - M. A. Kerefov
AU  - S.Kh. Gekkieva
AU  - M. M. Karmokov
TI  - On a сlass of non-local boundary value problems for the heat equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 30
EP  - 38
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a2/
LA  - ru
ID  - VKAM_2023_44_3_a2
ER  - 
%0 Journal Article
%A F. M. Nakhusheva
%A M. A. Kerefov
%A S.Kh. Gekkieva
%A M. M. Karmokov
%T On a сlass of non-local boundary value problems for the heat equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 30-38
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a2/
%G ru
%F VKAM_2023_44_3_a2
F. M. Nakhusheva; M. A. Kerefov; S.Kh. Gekkieva; M. M. Karmokov. On a сlass of non-local boundary value problems for the heat equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 44 (2023) no. 3, pp. 30-38. http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a2/

[1] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp.

[2] Shkhanukov M. Kh., Kerefov A. A., Berezovskii A. A., “Kraevye zadachi uravnenii teploprovodnosti s drobnoi proizvodnoi v granichnykh usloviyakh i raznostnye metody ikh chislennoi realizatsii”, Ukrainskii matematicheskii zhurnal, 45:9 (1993), 1289–1298 | MR

[3] Nakhushev A. M., Ob uravneniyakh sostoyaniya nepreryvnykh odnomernykh sistem i ikh prilozheniyakh, Logos, Nalchik, 1995, 50 pp.

[4] Nakhushev A. M., “Obratnye zadachi dlya vyrozhdayuschikhsya uravnenii i integralnogo uravneniya Volterra tretego roda”, Differentsialnye uravneniya, 10:1 (1974), 100–111 | Zbl

[5] Shkhanukov M. Kh., Mitropolskii Yu. A., Berezovskii A. A., “Ob odnoi nelokalnoi zadache dlya parabolicheskogo uravneniya”, Ukrainskii matematicheskii zhurnal, 47:6 (1995), 790–800 | MR | Zbl

[6] Alikhanov A. A., “Nelokalnye kraevye zadachi v differentsialnoi i raznostnoi traktovkakh”, Differentsialnye uravneniya, 44:7 (2008), 924–931 | MR | Zbl

[7] Nakhusheva F. M., Kudaeva F. Kh., Kaigermazov A. A., Karmokov M. M., “Raznostnaya skhema dlya uravneniya diffuzii drobnogo poryadka s sosredotochennoi teploemkostyu”, Sovremennye problemy nauki i obrazovaniya (Elektronnyi nauchnyi zhurnal), 2015, no. 2-2, 1–7

[8] Nakhusheva F. M., Dzhankulaeva M. A., Nakhusheva D. A., “Uravnenie teploprovodnosti s drobnoi proizvodnoi po vremeni s sosredotochennoi teploemkostyu”, Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovanii, 2017, no. 8-1, 22–27

[9] Nakhusheva F. M., Vodakhova V. A., Dzhankulaeva M. A., Guchaeva Z. Kh., “Chislennoe reshenie uravneniya diffuzii s drobnoi proizvodnoi po vremeni s sosredotochennoi teploemkostyu”, Sbornik trudov Mezhdunarodnoi nauchnoi konferentsii, Sovremennye problemy prikladnoi matematiki, informatiki i mekhaniki, 2019, 104–110

[10] Kerefov M. A., Nakhusheva F. M., Gekkieva S. Kh., “Kraevaya zadacha dlya obobschennogo uravneniya vlagoperenosa Allera – Lykova s sosredotochennoi teploemkostyu”, Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya, 24:3 (2018), 23–29 | Zbl

[11] Barrett J. H., “Dielectric Constant in Perovskite Type Crystals”, Physical Review, 86:1 (1952), 118 | DOI