On a mixed problem for a third order degenerating hyperbolic equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 44 (2023) no. 3, pp. 19-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper investigates a mixed boundary value problem for a third-order hyperbolic equation with order degeneration inside the domain In the positive part of the domain, the equation under consideration coincides with the Hallaire equation, which is a third-order hyperbolic equation, although it is commonly called an pseudoparabolic equation. In the negative part of the domain, it coincides with the degenerate hyperbolic equation of the first kind, the special case of the Bizadze-Lyskov equation. For the problem under study, a theorem on the existence and uniqueness of a regular solution is proved. The uniqueness of the solution is proved by the Tricomi method. Regarding the desired solution, the corresponding fundamental ratios have been found. Using the method of integral equations, the existence of a solution is equivalently reduced to the solvability of the Volterra integral equation of the second kind with respect the derivative of the desired solution. According to the general theory of Volterra integral equations of the second kind, the resulting equation is uniquely solvable in the class of regular functions. The solution to the problem can be stated explicitly as a solution to the mixed problem for the Hallaire equation in the positive part of the domain and as a solution to the Cauchy problem for the degenerate hyperbolic equation of the first kind in the negative part of the domain.
Keywords: degenerate hyperbolic equation, fractional integro-differentiation operator.
Mots-clés : Hallaire equation
@article{VKAM_2023_44_3_a1,
     author = {R. Kh. Makaova},
     title = {On a mixed problem for a third order degenerating hyperbolic equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {19--29},
     year = {2023},
     volume = {44},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a1/}
}
TY  - JOUR
AU  - R. Kh. Makaova
TI  - On a mixed problem for a third order degenerating hyperbolic equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 19
EP  - 29
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a1/
LA  - ru
ID  - VKAM_2023_44_3_a1
ER  - 
%0 Journal Article
%A R. Kh. Makaova
%T On a mixed problem for a third order degenerating hyperbolic equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 19-29
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a1/
%G ru
%F VKAM_2023_44_3_a1
R. Kh. Makaova. On a mixed problem for a third order degenerating hyperbolic equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 44 (2023) no. 3, pp. 19-29. http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a1/

[1] Hallaire M., “L'eau et la productions vegetable”, Institut National de la Recherche Agronomique, 9 (1964)

[2] Showalter R. E., Ting T. W., “Pseudoparabolic partial differential equations”, SIAM J. Math. Anal., 1:1 (1970), 1-26 | DOI | MR | Zbl

[3] Chudnovskii A. F., Teplofizika pochv, Nauka, M., 1976, 352 pp.

[4] Coleman B. D., Duffin R. J., Mizel V. J., “Instability, Uniqueness, and Nonexistence Theorems for the Equation on a Strip”, Arch. Rat. Mech. Anal., 19 (1965), 100–116 | DOI | MR | Zbl

[5] Colton D., “Pseudoparabolic Equations in One Space Variable”, Journal of Differ. Equations, 12:3 (1972), 559–565 | DOI | MR | Zbl

[6] Shkhanukov M. Kh., “O nekotorykh kraevykh zadachakh dlya uravnenii tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Differents. uravneniya, 18:4 (1982), 689–699 | MR | Zbl

[7] Yangarber V. A., “The mixed problem for a modified moisture-transfer equation”, Journal of Applied Mechanics and Technical Physics., 8:1 (1967), 62–64 | DOI

[8] Kozhanov A. I., “Ob odnoi nelokalnoi kraevoi zadache s peremennymi koeffitsientami dlya uravnenii teploprovodnosti i Allera”, Differents. uravneniya, 40:6 (2004), 815–826 Doi: 10.1023/B:DIEQ.0000046860.84156.f0 | MR | Zbl

[9] Makaova R. Kh., “Vtoraya kraevaya zadacha dlya obobschennogo uravneniya Allera s drobnoi proizvodnoi Rimana–Liuvillya”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 17:3 (2015), 35–38

[10] Makaova R. Kh., “Pervaya kraevaya zadacha v nelokalnoi postanovke dlya obobschennogo uravneniya Allera s drobnoi proizvodnoi Rimana - Liuvillya”, Vestnik AGU. Seriya 4: Estestvenno-matematicheskie i tekhnicheskie nauki, 4:211 (2017), 36–41

[11] Smirnov M. M., Vyrozhdayuschiesya giperbolicheskie uravneniya, Vysheishaya shkola, Minsk, 1977, 150 pp.

[12] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp.

[13] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[14] Kalmenov T. Sh., “Kriterii edinstvennosti resheniya zadachi Darbu dlya odnogo vyrozhdayuschegosya giperbolicheskogo uravneniya”, Differents. uravneniya, 7:1 (1971), 178–181 | Zbl

[15] Kalmenov T. Sh., “O zadache Darbu dlya odnogo vyrozhdayuschegosya uravneniya”, Differents. uravneniya, 10:1 (1974), 59–68 | Zbl

[16] Balkizov Zh. A., “Pervaya kraevaya zadacha dlya vyrozhdayuschegosya vnutri oblasti giperbolicheskogo uravneniya”, Vladikavkazskii matematicheskii zhurnal, 18:2 (2016), 19–30 | MR | Zbl

[17] Balkizov Zh. A., “Kraevaya zadacha dlya vyrozhdayuschegosya vnutri oblasti giperbolicheskogo uravneniya”, Izvestiya VUZov. Severo-Kavkazskii region. Seriya: Estestvennye nauki., 1:189 (2016), 5–10

[18] Balkizov Zh. A., “Zadacha so smescheniem dlya vyrozhdayuschegosya giperbolicheskogo uravneniya pervogo roda”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 25:1 (2021), 21–34 DOI:10.14498/vsgtu1783 | DOI | Zbl

[19] Repin O. A., Kraevye zadachi so smescheniem dlya uravnenii giperbolicheskogo i smeshannogo tipov, izdatelstvo Saratovskogo universiteta, Saratov, 1992, 161 pp. | MR

[20] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006, 287 pp.

[21] Makaova R. Kh., “Kraevaya zadacha dlya giperbolicheskogo uravneniya tretego poryadka s vyrozhdeniem poryadka vnutri oblasti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:4 (2017), 651–664 DOI:10.14498/vsgtu1574 | DOI | Zbl

[22] Makaova R. Kh., “oundary-Value Problem for a Third-Order Hyperbolic Equation that is Degenerate Inside a Domain and Contains the Aller Operator in the Principal Part”, Journal of Mathematical Sciences, 250:5 (2020), 780-787 DOI:10.1007/s10958-020-05043-1 | DOI | Zbl

[23] Makaova R. Kh., “Ob odnoi smeshannoi zadache dlya neodnorodnogo uravneniya Allera”, Doklady AMAN, 22:2 (2022), 29–33 DOI:10.47928/1726-9946-2022-22-2-29-33

[24] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya. T.1., Fizmatlit, M., 2003, 680 pp.