The Cauchay problem for a loaded partial differential equation of the first order
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 44 (2023) no. 3, pp. 9-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As is well known, the presence of characteristics is very significant in the study of the Cauchy problem for partial differential equations regardless of its order. In the case where the partial differential equation is loaded, additional conditions dependent on the type of load arise for the unique solvability of the Cauchy problem. These conditions arise even for the simplest first and higher order partial differential equations. The main purpose of this paper is to illustrate the effects arising from the study of the Cauchy problem for the linear loaded first-order partial differential equation. Since the correctness of the Cauchy problem is equivalently reduced to the integral equation of the second kind, the basic method is used to prove its solvability – method of successive substitutions. The main conclusion is that the solvability of the Cauchy problem for a loaded partial derivative equation essentially depends on the choice of the load. In the case when the solvability of the Cauchy problem is proven, it turns out that the area of influence of the Cauchy data is not limited to the characteristics only, but new non-characteristic lines appear, beyond which the Cauchy data cannot clearly be extended.
Keywords: differential equations, loaded differential equation, Cauchy problem, integral equation, method of successive substitutions, characteristics of a differential equation, well-posed problem.
@article{VKAM_2023_44_3_a0,
     author = {A. Kh. Attaev},
     title = {The {Cauchay} problem for a loaded partial differential equation of the first order},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {9--18},
     year = {2023},
     volume = {44},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a0/}
}
TY  - JOUR
AU  - A. Kh. Attaev
TI  - The Cauchay problem for a loaded partial differential equation of the first order
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 9
EP  - 18
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a0/
LA  - ru
ID  - VKAM_2023_44_3_a0
ER  - 
%0 Journal Article
%A A. Kh. Attaev
%T The Cauchay problem for a loaded partial differential equation of the first order
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 9-18
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a0/
%G ru
%F VKAM_2023_44_3_a0
A. Kh. Attaev. The Cauchay problem for a loaded partial differential equation of the first order. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 44 (2023) no. 3, pp. 9-18. http://geodesic.mathdoc.fr/item/VKAM_2023_44_3_a0/

[1] Feller W., “The parabolic differential equations and the associated semi-groups of transformations”, Ann. Math., 55 (1952), 468–519 | DOI | MR | Zbl

[2] Phillips R. S., “Dissipative operators and hyperbolic systems of partial differential equations”, Trans. Amer. Math. Soc., 90:2 (1959), 193–254 | DOI | MR | Zbl

[3] Krall A. M., “The development of general differential and general differential boundary systems”, Rocky Mountain J. Math., 5:4 (1975), 493–542 | MR | Zbl

[4] Nakhushev A. M., “O zadache Darbu dlya odnogo vyrozhdayuschegosya nagruzhennogo integro-differentsialnogo uravneniya vtorogo poryadka”, Differents. uravneniya, 12:1 (1976), 103–108 | MR | Zbl

[5] Borodin A.V., “Ob odnoi otsenke dlya uravnenii v chastnykh proizvodnykh vtorogo poryadka i ee prilozhenii”, Differents. uravneniya, 14:1 (1978), 12–21 | MR | Zbl

[6] Borodin A.V., “Differentsiruemost po parametru reshenii nelineino nagruzhennykh kraevykh zadach dlya uravnenii v chastnykh proizvodnykh vtorogo poryadka. I”, Differents. uravneniya, 15:1 (1979), 18–25 | MR | Zbl

[7] Borodin A.V., “Differentsiruemost po parametru reshenii nelineino nagruzhennykh kraevykh zadach dlya uravnenii v chastnykh proizvodnykh vtorogo poryadka. II”, Differents. uravneniya, 16:1 (1980), 20–33 | MR | Zbl

[8] Borok V.M., Zhitomirskii Ya.I., “Zadacha Koshi dlya odnogo klassa nagruzhennykh uravnenii”, Uspekhi matematicheskikh nauk, 34:1(205) (1979), 221–222 | MR

[9] Borok V.M., Zhitomirskii Ya.I., “Zadacha Koshi dlya lineinykh nagruzhennykh differentsialnykh uravnenii, I. Edinstvennost”, Izvestiya vuzov, 1981, no. 9, 5–12 | Zbl

[10] Borok V.M., Zhitomirskii Ya.I., “Zadacha Koshi dlya lineinykh nagruzhennykh differentsialnykh uravnenii, II. Korrektnost”, Izvestiya vuzov, 1981, no. 10, 3–9 | Zbl

[11] Kaziev V.M., “O zadache Darbu dlya odnogo nagruzhennogo integro-differentsialnogo uravneniya vtorogo poryadka”, Differents. uravneniya, 14:1 (1978), 181–184 | MR | Zbl

[12] Kaziev V.M., “Zadacha Trikomi dlya nagruzhennogo uravneniya Lavrenteva–Bitsadze”, Differents. uravneniya, 15:1 (1979), 173–175 | MR | Zbl

[13] Shkhanukov M.Kh., “Raznostnyi metod resheniya odnogo nagruzhennogo uravneniya parabolicheskogo tipa”, Differents. uravneniya, 13:1 (1977), 163–167 | MR

[14] Lanin I.N., “Kraevaya zadacha dlya odnogo nagruzhennogo giperbolo-parabolicheskogo uravneniya tretego poryadka”, Differents. uravneniya, 17:1 (1981), 97–106 | MR | Zbl

[15] Nakhushev A.M., Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995, 301 pp.

[16] Nakhushev A.M., “Nagruzhennye uravneniya matematicheskoi ekonomiki”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 12:1 (2010), 91–97

[17] Kaziev V.M., “Zadacha Gursa dlya odnogo nagruzhennogo integro-differentsialnogo uravneniya”, Differents. uravneniya, 17:2 (1981), 313–319 | MR | Zbl

[18] Ogorodnikov E. N., “Nekotorye kharakteristicheskie zadachi dlya sistem nagruzhennykh differentsialnykh uravnenii i ikh svyaz s nelokalnymi kraevymi zadachami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2003, no. 19, 22–28 | DOI

[19] Attaev A. Kh., “Zadacha Gursa dlya lokalno-nagruzhennogo uravnenii so stepennym parabolicheskim vyrozhdeniem”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 10:2 (2008), 14–16

[20] Attaev A. Kh., “Zadacha Gursa dlya nagruzhennogo vyrozhdayuschegosya giperbolicheskogo uravneniya vtorogo poryadka s operatorom Gellerstedta v glavnoi chasti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 20:1 (2016), 7–21 | DOI | Zbl

[21] Attaev A. Kh., “Zadacha s dannymi na parallelnykh kharakteristikakh dlya nagruzhennogo volnovogo uravneniya”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 15:2 (2013), 25–28

[22] Attaev A. Kh., “Zadacha Gursa dlya nagruzhennogo giperbolicheskogo uravneniya”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 16:3 (2014), 9–12