@article{VKAM_2023_43_2_a6,
author = {D. A. Tvyordiy and R. I. Parovik and A. R. Hayotov and A. K. Boltaev},
title = {Parallelization of a numerical algorithm for solving the {{\CYRS}auchy} problem for a nonlinear differential equation of fractional variable order using {OpenMP} technology},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {87--110},
year = {2023},
volume = {43},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a6/}
}
TY - JOUR AU - D. A. Tvyordiy AU - R. I. Parovik AU - A. R. Hayotov AU - A. K. Boltaev TI - Parallelization of a numerical algorithm for solving the Сauchy problem for a nonlinear differential equation of fractional variable order using OpenMP technology JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2023 SP - 87 EP - 110 VL - 43 IS - 2 UR - http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a6/ LA - en ID - VKAM_2023_43_2_a6 ER -
%0 Journal Article %A D. A. Tvyordiy %A R. I. Parovik %A A. R. Hayotov %A A. K. Boltaev %T Parallelization of a numerical algorithm for solving the Сauchy problem for a nonlinear differential equation of fractional variable order using OpenMP technology %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2023 %P 87-110 %V 43 %N 2 %U http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a6/ %G en %F VKAM_2023_43_2_a6
D. A. Tvyordiy; R. I. Parovik; A. R. Hayotov; A. K. Boltaev. Parallelization of a numerical algorithm for solving the Сauchy problem for a nonlinear differential equation of fractional variable order using OpenMP technology. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 43 (2023) no. 2, pp. 87-110. http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a6/
[1] Acioli P. S., Xavier F. A., Moreira D. M., “Mathematical Model Using Fractional Derivatives Applied to the Dispersion of Pollutants in the Planetary Boundary Layer”, Boundary-Layer Meteorology, 170:2 (2019), 285–304 DOI: 10.1007/s10546-018-0403-1 | DOI
[2] Aslam M., Farman M., Ahmad H., Gia T. N., Ahmad A., Askar S., “Fractal fractional derivative on chemistry kinetics hires problem”, AIMS Mathematics, 7:1 (2021), 1155–1184 DOI: 10.3934/math.2022068 | DOI | MR
[3] Jamil B., Anwar M. S., Rasheed A., Irfan M., “MHD Maxwell flow modeled by fractional derivatives with chemical reaction and thermal radiation”, Chinese Journal of Physics, 67 (2020), 512–533 DOI: 10.1016/j.cjph.2020.08.012 | DOI | MR
[4] Fellah M., Fellah Z. E. A., Mitri F., Ogam E., Depollier C., “Transient ultrasound propagation in porous media using Biot theory and fractional calculus: Application to human cancellous bone”, The Journal of the Acoustical Society of America, 133:4 (2013), 1867–1881 DOI: 10.1121/1.47927213 | DOI
[5] Chen W., “An Intuitive Study of Fractional Derivative Modeling and Fractional Quantum in Soft Matter”, Journal of Vibration and Control, 14:9–10 (2008), 1651–1657 DOI: 10.1177/1077546307087398 | DOI | Zbl
[6] Garrappa R., “Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial”, Mathematics, 6:2:16 (2018), 1–23 DOI: 10.3390/math6020016 | DOI
[7] Bohaienko V., “Parallel algorithms for modelling two-dimensional non-equilibrium salt transfer processes on the base of fractional derivative model”, Fractional Calculus and Applied Analysis, 21:3 (2018), 654–671 DOI: 10.1515/fca-2018-0035 | DOI | MR | Zbl
[8] Bogaenko V. A., Bulavatskiy V. M., Kryvonos I. G., “On Mathematical modeling of Fractional-Differential Dynamics of Flushing Process for Saline Soils with Parallel Algorithms Usage”, Journal of Automation and Information Sciences, 48:10 (2016), 1–12 DOI: 10.1615/JAutomatInfScien.v48.i10.10 | DOI
[9] Gerasimov A. N., “Generalization of linear deformation laws and their application to internal friction problems”, Applied Mathematics and Mechanics, 12 (1948), 529–539 | MR
[10] Caputo M., “Linear models of dissipation whose Q is almost frequency independent – II”, Geophysical Journal International, 13:5 (1967), 529–539 DOI: 10.1111/j.1365-246X.1967.tb02303.x | DOI
[11] Sanders J., Kandrot E., CUDA by Example: An Introduction to General-Purpose GPU Programming, Addison-Wesley Professional, London, 2010, 311 pp.
[12] Bogaenko V. O., “Parallel finite-difference algorithms for three-dimensional space-fractional diffusion equation with phi–Caputo derivatives”, Computational and Applied Mathematics, 39:163 (2020), 1–20 DOI: 10.1007/s40314-020-01191-x
[13] Machado J. T., Kiryakova V., Mainardi F., “Recent history of fractional calculus”, Communications in nonlinear science and numerical simulation, 16:3 (2011), 1140–1153 DOI: 10.1016/j.cnsns.2010.05.027 | DOI | MR | Zbl
[14] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: a review”, Proceedings of the Royal Society A, 476:2234 (2020), 20190498 DOI: 10.1098/rspa.2019.0498 | DOI | MR
[15] Ortigueira M. D., Valerio D., Machado J. T., “Variable order fractional systems”, Communications in Nonlinear Science and Numerical Simulation, 71 (2019), 231–243 DOI: 10.1016/j.cnsns.2018.12.003 | DOI | MR | Zbl
[16] Tvoyrdyj D. A., “The Cauchy problem for the Riccati equation with variable power memory and non-constant coeffcients”, Vestnik KRAUNC. Fiz.-mat. nauki, 23:3 (2018), 148–157 (In Russian) DOI: 10.18454/2079-6641-2018-23-3-148-157
[17] Borzunov S. V., Kurgalin S. D., Flegel A. V., Workshop on parallel programming: tutorial, BHV, St. Petersburg, 2017, 236 pp. (In Russian)
[18] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam, 2006, 523 pp. | MR | Zbl
[19] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6(1):23 (2022), 1–27 DOI: 10.3390/fractalfract6010023
[20] Tvyordyj D. A., “Hereditary Riccati equation with fractional derivative of variable order”, Journal of Mathematical Sciences, 253:4 (2021), 564–572 DOI: 10.1007/s10958-021-05254-0 | DOI | Zbl
[21] Tverdyi D. A., Parovik R. I., “Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect”, Fractal and Fractional, 6(3):163 (2022), 1–35 DOI: 10.3390/fractalfract6030163
[22] Daintith J., Wright E., A Dictionary of Computing, Oxford University Press, Oxford , 2008, 583 pp. DOI: 10.1093/acref/9780199234004.001.0001 | Zbl
[23] Miller R., Boxer L., Algorithms Sequential and Parallel: A Unified Approach. 3rd edition, Cengage Learning, Boston, 2013, 417 pp.
[24] Rauber T., Runger G., Parallel Programming for Multicore and Cluster Systems. 2nd edition, Springer, New York, 2013, 516 pp. | MR
[25] Al-hayanni M. A. N., Xia F., Rafiev A., Romanovsky A., Shafik R., Yakovlev A., “Amdahl's Law in the Context of Heterogeneous Many-core Systems - ASurvey”, IET Computers Digital Techniques, 14:4 (2020), 133–148 DOI: 10.1049/iet-cdt.2018.5220 | DOI
[26] Okrepilov V. V., Makarov V. L., Bakhtizin A. R., Kuzmina S. N., “Application of Supercomputer Technologies for Simulation of Socio-Economic Systems”, R-Economy, 1:2 (2015), 340–350 DOI: 10.15826/recon.2015.2.016 | DOI
[27] Il’in V. P., Skopin I. N., “About performance and intellectuality of supercomputer modeling”, Programming and Computer Software, 42:1 (2016), 5–16 DOI: 10.1134/S0361768816010047 | DOI
[28] Parovik R. I., “On the numerical solution of equations fractal oscillator with variable order fractional of time”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 8:1 (2014), 60–65 (In Russian) DOI: 10.18454/2079-6641-2014-8-1-60-65 | Zbl
[29] Parovik R. I., “Mathematical models of oscillators with memory”, Oscillators-Recent Developments, 2019, 3–21 DOI: 10.5772/intechopen.81858
[30] Volterra V., Theory of functionals and of integral and integro-differential equations, Dover publications, New York, 1959, 226 pp. | MR | Zbl
[31] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers, Background and Theory, v. I., Springer, Berlin, 2013, 373 pp. | MR | Zbl
[32] Tverdyi D. A., Makarov E. O., Parovik R. I., “Hereditary Mathematical Model of the Dynamics of Radon Accumulation in the Accumulation Chamber”, Mathematics, 11:4:850 (2023), 1–20 DOI: 10.3390/math11040850 | DOI
[33] Jeng S., Kilicman A., “Fractional Riccati Equation and Its Applications to Rough Heston Model Using Numerical Methods”, Symmetry, 12 (2020) DOI: 10.3390/sym12060959 | Zbl
[34] Sun H., et al., “Finite difference schemes for variable-order time fractional diffusion equation”, International Journal of Bifurcation and Chaos, 22:04 (2012), 1250085 DOI: 10.1142/S021812741250085X | DOI | MR
[35] Parovik R. I., “On a finite-difference scheme for an hereditary oscillatory equation”, Journal of Mathematical Sciences, 253:4 (2021), 547–557 DOI: 10.1007/s10958-021-05252-2 | DOI | Zbl
[36] Kalitkin N. N., Numerical methods. 2nd ed., BHV, St. Petersburg, 2011, 592 pp. (In Russian) | MR
[37] Brent R. P., “The parallel evaluation of general arithmetic expressions”, Journal of the Association for Computing Machinery, 21:2 (1974), 201–206 DOI: 10.1145/321812.321815 | DOI | MR | Zbl
[38] Corman T. H., Leiserson C. E., Rivet R. L., Stein C., Introduction to Algorithms, 3rd Edition, The MIT Press, Cambridge, 2009, 1292 pp. | MR
[39] Shao J., Mathematical Statistics. 2-ed, Springer, New York, 2003, 592 pp. | MR
[40] Gergel V. P., Vysokoproizvoditel'nyye vychisleniya dlya mnogoyadernykh mnogoprotsessornykh sistem [High performance computing for multi-core multiprocessor systems], Study guide, Moscow State University Publishing House, Moscow, 2010, 544 pp. (In Russian)