On the possibility of placing two system blocks and two computational
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 43 (2023) no. 2, pp. 31-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The algorithm for finding a solution to each task, see the title of the article, implies its discreteness of relationships from the total of its possible parts. Or exactly, the algorithm must be divided into some sequence of arithmetic operations to be implemented. The existing measurement theory, which is interpreted in particular as a theory of ways to encode real numbers, provides an answer to these listed problems. Using this theory, a real algorithm is found for placing all existing primitive numerical sequences in space in the form of arithmetic tables. Additional research by coding the special properties of recurrent numerical series led to the establishment of two computational formulas for finding all prime numbers. Then to the system blocks, which in essence do not differ from formulas. In applied arithmetic, this is the ability to place such computational objects in three-dimensional space. For the computer implementation of the set computational tasks, those rules of real and arithmetic operations are determined, which must take place for tables. The method of constructing real-arithmetic tables is not universal, but it makes it possible to obtain its further development in the subsystem of numerical irregular triangles.
Keywords: three-dimensional space, recurrent (recurrent) numerical sequences, prime numbers
Mots-clés : Pascal's triangle.
@article{VKAM_2023_43_2_a2,
     author = {V. L. Shcherban},
     title = {On the possibility of placing two system blocks and two computational},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {31--43},
     year = {2023},
     volume = {43},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a2/}
}
TY  - JOUR
AU  - V. L. Shcherban
TI  - On the possibility of placing two system blocks and two computational
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 31
EP  - 43
VL  - 43
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a2/
LA  - ru
ID  - VKAM_2023_43_2_a2
ER  - 
%0 Journal Article
%A V. L. Shcherban
%T On the possibility of placing two system blocks and two computational
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 31-43
%V 43
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a2/
%G ru
%F VKAM_2023_43_2_a2
V. L. Shcherban. On the possibility of placing two system blocks and two computational. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 43 (2023) no. 2, pp. 31-43. http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a2/

[1] Markushevich A. I., Vozvratnye posledovatelnosti, Nauka, M., 1983, 48 pp.

[2] Sigler L., Fibonacci’s Liber Abaci, Leonardo Pisano’s Book of Calculations, Springer, N-Y, 2002 | MR

[3] Scherban V. L., “Pochemu okruzhayuschee nas prostranstvo imenno trekhmerno”, Vestnik Baltiiskogo federalnogo universiteta im. I. Kanta. Ser. Fiziko-matematicheskie i tekhnicheskie nauki, 2020, no. 1, 97–112

[4] Kaplan R., “The Nothing That Is”, A Natural History of Zero, Oxford Univ. Press, 2000, 4–14 | MR

[5] Uspenskii V. A., Treugolnik Paskalya, Nauka, M., 1979, 47 pp.

[6] Prasolov V.V., Mnogochleny, MTsNMO, M., 2001, 336 pp.

[7] Avdoshin S. M., Nabebin A. A., “Diskretnaya matematika”, Modulyarnaya algebra, kriptografiya, kodirovanie, DMK Press, M., 2017, 49–51

[8] Vinberg E. B., Algebra mnogochlenov, Prosveschenie, M., 1980, 43–60

[9] Voronin S. M., Prostye chisla, Znanie, M., 1978, 96 pp.

[10] Boltyanskii V. G., Vilenkin N. Ya., Simmetriya v algebre, MTsNMO, M., 2002, 53–55

[11] Sposob dokazatelstva dlya matematiki, gde suschestvuet mnogo suzhdenii, kotorye ne mogut byt dokazany po-drugomu. (Data obrascheniya: 07.02.2022) https://ru.wikipedia.org/wiki/Dokazatelstvo_ot_protivnogo

[12] Scherban V.L., “Kak iz treugolnika Paskalya izvlech beskonechnyi ryad stepennykh summ ot mnogikh peremennykh i arifmeticheskikh sistem, sravnivaemykh po modulyu prostogo chisla”, Vestnik KRAUNTs. Fiz.-mat. nauki, 39:2 (2022), 222- 236 DOI: 10.26117/2079-6641-2022-39-2-222-236 | DOI

[13] Ayoub R. G., An introduction to the analytic theory of numbers, v. 10, American Mathematical Society, USA, 1963, 379 pp. | MR | Zbl

[14] Itogi nauki i tekhniki. Seriya “Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory”., Math-net.ru {arkhiv} (data obrascheniya: 07. 02. 2022) http://www.mathnet.ru/php/journal.phtml?jrnid=into&wshow=details&option_lang=rus