Mots-clés : Pascal's triangle.
@article{VKAM_2023_43_2_a2,
author = {V. L. Shcherban},
title = {On the possibility of placing two system blocks and two computational},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {31--43},
year = {2023},
volume = {43},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a2/}
}
V. L. Shcherban. On the possibility of placing two system blocks and two computational. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 43 (2023) no. 2, pp. 31-43. http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a2/
[1] Markushevich A. I., Vozvratnye posledovatelnosti, Nauka, M., 1983, 48 pp.
[2] Sigler L., Fibonacci’s Liber Abaci, Leonardo Pisano’s Book of Calculations, Springer, N-Y, 2002 | MR
[3] Scherban V. L., “Pochemu okruzhayuschee nas prostranstvo imenno trekhmerno”, Vestnik Baltiiskogo federalnogo universiteta im. I. Kanta. Ser. Fiziko-matematicheskie i tekhnicheskie nauki, 2020, no. 1, 97–112
[4] Kaplan R., “The Nothing That Is”, A Natural History of Zero, Oxford Univ. Press, 2000, 4–14 | MR
[5] Uspenskii V. A., Treugolnik Paskalya, Nauka, M., 1979, 47 pp.
[6] Prasolov V.V., Mnogochleny, MTsNMO, M., 2001, 336 pp.
[7] Avdoshin S. M., Nabebin A. A., “Diskretnaya matematika”, Modulyarnaya algebra, kriptografiya, kodirovanie, DMK Press, M., 2017, 49–51
[8] Vinberg E. B., Algebra mnogochlenov, Prosveschenie, M., 1980, 43–60
[9] Voronin S. M., Prostye chisla, Znanie, M., 1978, 96 pp.
[10] Boltyanskii V. G., Vilenkin N. Ya., Simmetriya v algebre, MTsNMO, M., 2002, 53–55
[11] Sposob dokazatelstva dlya matematiki, gde suschestvuet mnogo suzhdenii, kotorye ne mogut byt dokazany po-drugomu. (Data obrascheniya: 07.02.2022) https://ru.wikipedia.org/wiki/Dokazatelstvo_ot_protivnogo
[12] Scherban V.L., “Kak iz treugolnika Paskalya izvlech beskonechnyi ryad stepennykh summ ot mnogikh peremennykh i arifmeticheskikh sistem, sravnivaemykh po modulyu prostogo chisla”, Vestnik KRAUNTs. Fiz.-mat. nauki, 39:2 (2022), 222- 236 DOI: 10.26117/2079-6641-2022-39-2-222-236 | DOI
[13] Ayoub R. G., An introduction to the analytic theory of numbers, v. 10, American Mathematical Society, USA, 1963, 379 pp. | MR | Zbl
[14] Itogi nauki i tekhniki. Seriya “Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory”., Math-net.ru {arkhiv} (data obrascheniya: 07. 02. 2022) http://www.mathnet.ru/php/journal.phtml?jrnid=into&wshow=details&option_lang=rus