On the refinement of the method of reducing a system of linear differential equations to a single higher-order equation, which makes it possible to find a general solution to the original
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 43 (2023) no. 2, pp. 20-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of differential equations is currently an exceptionally content-rich, rapidly developing branch of mathematics, closely related to other areas of mathematics and its applications. When studying specific differential equations that arise in the process of solving physical problems, methods are created that have great generality and are applied to a wide range of mathematical problems. The problem of integrating differential equations with constant coefficients had a great influence on the development of linear algebra. At present, the problem of solving a system of linear ordinary differential equations with constant coefficients $x'(t)=A\cdot x(t)$ is one of the most important problems in both the theory of ordinary differential equations and linear algebra. One of the most well-known methods for solving a system of linear ordinary differential equations with constant coefficients is the method of reducing a system of linear equations to a single higher-order equation, which makes it possible to find solutions to the original system in the form of linear combinations of derivatives of only one function. In this paper, we study the following problem: for which matrices $A$ the components of the system $x'(t)=A\cdot x(t)$ under any initial condition $x(t_0)=x_0$ can be expressed as linear combinations of derivatives of only one given component $x_k(t)$. A new simple expressibility criterion is formulated, and its correctness is proved in detail. The result obtained can also be applied in the study of solutions of the system $x'(t)=A\cdot x(t)$ for periodicity and in the study of linear systems for complete observability.
Keywords: homogeneous system of linear differential equations with constant coefficients, method for reducing a system of linear equations to a single higher-order equation, expressibility criterion, algorithm.
@article{VKAM_2023_43_2_a1,
     author = {D. N. Barotov and R. N. Barotov},
     title = {On the refinement of the method of reducing a system of linear differential equations to a single higher-order equation, which makes it possible to find a general solution to the original},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {20--30},
     year = {2023},
     volume = {43},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a1/}
}
TY  - JOUR
AU  - D. N. Barotov
AU  - R. N. Barotov
TI  - On the refinement of the method of reducing a system of linear differential equations to a single higher-order equation, which makes it possible to find a general solution to the original
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 20
EP  - 30
VL  - 43
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a1/
LA  - ru
ID  - VKAM_2023_43_2_a1
ER  - 
%0 Journal Article
%A D. N. Barotov
%A R. N. Barotov
%T On the refinement of the method of reducing a system of linear differential equations to a single higher-order equation, which makes it possible to find a general solution to the original
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 20-30
%V 43
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a1/
%G ru
%F VKAM_2023_43_2_a1
D. N. Barotov; R. N. Barotov. On the refinement of the method of reducing a system of linear differential equations to a single higher-order equation, which makes it possible to find a general solution to the original. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 43 (2023) no. 2, pp. 20-30. http://geodesic.mathdoc.fr/item/VKAM_2023_43_2_a1/

[1] Gantmakher F. R., Teoriya matrits, Fizmatgiz, M., 2010, 560 pp. | MR

[2] Panteleev A. V., Yakimova A. S., Rybakov K. A., Obyknovennye differentsialnye uravneniya, Praktikum, Infra-M., M., 2016, 432 pp.

[3] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Fizmatgiz, M., 1965, 332 pp.

[4] Filippov A. F., Sbornik zadach po differentsialnym uravneniyam, Fizmatgiz, M., 1961, 100 pp.

[5] Mukhamedzhanova U. M., “Zhordanova forma matritsy i resheniya lineinykh sistem obyknovennykh differentsialnykh uravnenii s postoyannymi koeffitsientami”, Uchenye zapiski Khudzhandskogo gosudarstvennogo universiteta im. akademika B. Gafurova. Seriya: Estestvennye i ekonomicheskie nauki, 2017, no. 1, 20-26

[6] Baloev A. A., “Matrichno-algebraicheskaya forma resheniya sistemy lineinykh obyknovennykh differentsialnykh uravnenii s postoyannymi koeffitsientami”, Sibirskii zhurnal industrialnoi matematiki, 17:3 (2014), 3-12 | MR | Zbl

[7] Nazimov A. B., Ochilova M. A., Sovremennye problemy i perspektivy obucheniya matematike, fizike, informatike v shkole i vuze: Mezhvuzovskii sbornik nauchno - metodicheskikh trudov, Vologodskii gos. univ., Vologda, 2021

[8] Podgaev A. G., Sin A. Z., “Prostoi sposob obosnovaniya metoda isklyucheniya pri reshenii normalnoi lineinoi sistemy differentsialnykh uravnenii s postoyannymi koeffitsientami”, Uchenye zametki TOGU, 5:4 (2014), 1357-1363

[9] Schitov I. N., Begun E. N., Aktualnye problemy radio- i kinotekhnologii: Materialy VI Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, posvyaschennoi 125-letiyu so dnya rozhdeniya vydayuschegosya russkogo uchenogo v oblasti elektroniki i vakuumnoi tekhniki S.A. Vekshinskogo, 16–17 noyabrya 2021 g., Sankt-Peterburgskii gosudarstvennyi institut kino i televideniya, Sankt-Peterburg, 2022

[10] Malyshev Yu. V., Atamanov P. S., “O reshenii sistemy lineinykh differentsialnykh uravnenii operatornym metodom”, Vestnik Chuvashskogo universiteta, 2011, no. 3, 155-159

[11] Ivlev V. V., Krivoshei E. A., “Sistemy lineinykh differentsialnykh uravnenii. Integriruemye kombinatsii (prodolzhenie)”, Matematicheskoe obrazovanie, 2018, no. 1 (85), 47-51

[12] Rybakov M. A., “Reshenie sistem lineinykh differentsialnykh uravnenii s postoyannymi koeffitsientami s pomoschyu preobrazovaniya Laplasa”, Vestnik rossiiskikh universitetov. Matematika, 14:4 (2009), 791-792

[13] Barotov D. N., Barotov R. N., “O vyrazimosti funktsii sistemy $x'(t)=A\cdot x(t)$, sobstvennye znacheniya matritsy kotoroi yavlyayutsya nekratnymi v vide lineinykh kombinatsii proizvodnykh odnoi funktsii, vkhodyaschei v etu sistemu”, Prikladnaya matematika i voprosy upravleniya, 2023, no. 2, 9-20 | MR

[14] Barotov D. N., Barotov R. N., “Ob odnom kriterii vyrazimosti funktsii sistemy lineinykh differentsialnykh uravnenii s postoyannymi koeffitsientami v vide lineinykh kombinatsii proizvodnykh odnoi funktsii, vkhodyaschei v etu sistemu”, Vychislitelnye metody i programmirovanie, 2023, no. 3, 1-15

[15] Ha T. T., Gibson J. A., “A note on the determinant of a functional confluent Vandermonde matrix and controllability”, Linear Algebra and its Applications, 30 (1980), 69-75 | DOI | MR | Zbl