To the properties of one Fox function
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 140-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers a particular case of a special Fox function with four parameters, which arises in the theory of boundary value problems for parabolic equations with a Bessel operator and a fractional time derivative. The research objective is to obtain some recurrence relations, formulas for differentiation and integral transformation of the function under consideration. The results are obtained through representation of the considered function in terms of the Mellin–Barnes integral. The function asymptotic expansions for large and small values of the argument are also used. Employing the integral representation and some wellknown formulas for the Euler gamma function, recurrent relations are obtained connecting functions with different parameters, as well as a function with its first-order derivative. A formula for differentiation of the nth order is obtained. The paper studies an improper integral of the first kind that includes the considered function with two dependent of the four parameters. We show that the improper integral can be written out in terms of the well-known special Macdonald function. With special values of the parameters of the considered function we obtain some well-known elementary and special functions. The results of the study are theoretical and applicable in the study of boundary value problems for degenerate parabolic equations with fractional time derivatives.
Keywords: Fox function, Mellin-Barnes integral, Euler gamma function, Macdonald function, hypergeometric function.
@article{VKAM_2023_42_1_a9,
     author = {F. G. Khushtova},
     title = {To the properties of one {Fox} function},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {140--149},
     year = {2023},
     volume = {42},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a9/}
}
TY  - JOUR
AU  - F. G. Khushtova
TI  - To the properties of one Fox function
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 140
EP  - 149
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a9/
LA  - ru
ID  - VKAM_2023_42_1_a9
ER  - 
%0 Journal Article
%A F. G. Khushtova
%T To the properties of one Fox function
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 140-149
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a9/
%G ru
%F VKAM_2023_42_1_a9
F. G. Khushtova. To the properties of one Fox function. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 140-149. http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a9/

[1] Khushtova F.G., “Pervaya kraevaya zadacha v polupolose dlya uravneniya parabolicheskogo tipa s operatorom Besselya i proizvodnoi Rimana–Liuvillya”, Matem. zametki, 99:6 (2016), 921–928 | DOI | Zbl

[2] Khushtova F.G., “Vtoraya kraevaya zadacha v polupolose dlya uravneniya parabolicheskogo tipa s operatorom Besselya i chastnoi proizvodnoi Rimana–Liuvillya”, Matem. zametki, 103:3 (2018), 460–470 | DOI

[3] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[4] Kuznetsov D.S., Spetsialnye funktsii, Vysshaya shkola, M., 1962, 248 pp.

[5] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1965, 296 pp.

[6] Lebedev N., Spetsialnye funktsii i ikh prilozheniya, Fizmatlit, M., 1963, 358 pp.

[7] Marichev O.I., Metod vychisleniya integralov ot spetsialnykh funktsii (teoriya i tablitsy formul), Nauka i tekhnika, Mn., 1978, 312 pp.

[8] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dopolnitelnye glavy, v. 3, Nauka, M., 1986, 800 pp.

[9] Kilbas A.A., Saigo M., H-Transform. Theory and Applications, Chapman and Hall/CRC, Boca Raton, London, New York and Washington, D.C., 2004, 389 pp.

[10] Mathai A.M., Saxena R.K., Haubold H.J., The H-function. Theory and Applications, Springer, 2010, 270 pp.

[11] Khushtova F.G., “Formuly differentsirovaniya i formula avtotransformatsii dlya odnogo chastnogo sluchaya funktsii Foksa”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 20:4 (2020), 15–18 | DOI

[12] Khushtova F.G., “O nekotorykh svoistvakh odnoi spetsialnoi funktsii”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 22:2 (2020), 34–40

[13] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integraly i ryady. Elementarnye funktsii, v. 1, Fizmatlit, M., 2002, 632 pp.