@article{VKAM_2023_42_1_a7,
author = {M. S. Rasulov},
title = {Two free boundaries problem for a parabolic equation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {108--121},
year = {2023},
volume = {42},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a7/}
}
M. S. Rasulov. Two free boundaries problem for a parabolic equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 108-121. http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a7/
[1] Meirmanov A. M., Galtsev O. V., Galtseva O. A., “O suschestvovanii klassicheskogo resheniya v tselom po vremeni odnoi zadachi so svobodnoi granitsei”, Sib. matem. zhurn., 60:2 (2019), 419-428 DOI: 10.1134/S0037446619020137
[2] Crank J., Free and Moving Boundary Problem, Oxford, 1984, 425 pp.
[3] Friedman A., “Free boundary problems arising in biology”, Discrete and Continuous Dynamical Systems - B, 1:23 (2016), 193-202 DOI: 10.3934/dcdsb.2018013
[4] Gupta S. C., The Classical Stefan Problem: Basic concepts, modelling and analysis with quasi-analytical solutions and methods, Elservier, 2017, 717 pp.
[5] Takhirov J. O., “A free boundary problem for a reaction-diffusion equation in biology”, Indian J. Pure Appl. Math., 50 (2019), 95–112 DOI: 10.1007/s13226-019-0309-8 | DOI
[6] Du Y., Lin Zh., “Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary”, SIAM J.Math.Anal., 42 (2010), 377–405 DOI: 10.1137/090771089 | DOI
[7] Gu H, Lin Z. G and Lou B. D., “Long time behavior for solutions of Fisher-KPP equation with advection and free boundaries”, J. Funct. Anal., 269 (2015), 1714-1768, DOI: 0.1016/j.jfa.2015.07.002 | DOI
[8] Pan H., Ruixiang X., Bei Hu., “A free boundary problem with two moving boundaries modeling grain hydration”, Nonlinearity, 31 (2018), 3591-3616, DOI: 10.1088/1361-6544/aabf04 | DOI
[9] Rasulov M. S., “Problem for a quasilinear parabolic equation with two free boundaries”, Uzbek Mathematical Journal, 2 (2019), 89-102, DOI: 10.29229/uzmj.2019-2-11 | DOI
[10] Du Y., Bendong L., “Spreading and vanishing in nonlinear diffusion problems with free boundaries”, J. Eur. Math. Soc., 17 (2015), 2673–2724 DOI: 10.4171/JEMS/568 | DOI
[11] Briozzo A. Tarzia D., “A free boundary problem for a diffusion-convection equation”, International Journal of Non-Linear Mechanics, 120 (2020), 103394 | DOI
[12] Elmurodov A. N., Rasulov M. S., “On a uniqueness of solution for a reaction-diffusion type system with a free boundary,”, Lobachevskii Journal of Mathematics, 8:43 (2022), 2099-2106 DOI: 10.1134/S1995080222110087 | DOI
[13] Takhirov J. O., Rasulov M. S., “Problem with free boundary for systems of equations of reaction-diffusion type”, Ukr. Math. J, 2018, no. 69, 1968–1980 DOI: 10.1007/s11253-018-1481-4 | DOI
[14] Wang R., Wang L., Wang Zh., “Free boundary problem of a reaction-diffusion equation with nonlinear convection term”, J. Math.Anal.Appl., 2018, no. 467, 1233–1257 DOI:10.1016/j.jmaa.2018.07.065 | DOI
[15] Meirmanov A., Zadacha Stefana, Nauka, Novosibirsk, 1986, 240 pp.
[16] Takhirov Zh O., Turaev R. N., “Nelokalnaya zadacha Stefana dlya kvazilineinogo parabolicheskogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 60:28 (2012), 8–16 DOI: 10.14498/vsgtu1010 | DOI
[17] Kruzhkov S. N., “Nelineinye parabolicheskie uravneniya s dvumya nezavisimymi peremennymi”, Tr. MMO., 16:4 (1967), 329-346
[18] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1964, 428 pp.
[19] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp.