Two free boundaries problem for a parabolic equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 108-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers a two-free-boundary Stefan-type problem for a quasi-linear parabolic equation in one dimension. Nonlinear problems with free boundaries are studied using a method based on constructing a priori estimates. Therefore, some initial a priori estimates for the solution to the problem under consideration are first established. The main difficulty in constructing a theory for second-order quasi-linear parabolic equations is obtaining an a priori estimate for the solution's derivative module, and additional arguments are required in problems with a free boundary. To address this, the problem is reduced to a fixed-boundary problem through a change of variables. The resulting problem has time- and spacedependent coefficients with nonlinear terms. Next, Schauder-type a priori estimates are constructed for the equation with nonlinear terms and a fixed boundary. Based on these estimates, the uniqueness of the solution to the problem is proven. Then, the global existence of the solution to the problem is demonstrated using the Leray-Schauder fixed-point theorem.
Keywords: quasilinear parabolic equation, free boundary, a priori estimates, existence and uniqueness theorem.
@article{VKAM_2023_42_1_a7,
     author = {M. S. Rasulov},
     title = {Two free boundaries problem for a parabolic equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {108--121},
     year = {2023},
     volume = {42},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a7/}
}
TY  - JOUR
AU  - M. S. Rasulov
TI  - Two free boundaries problem for a parabolic equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 108
EP  - 121
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a7/
LA  - ru
ID  - VKAM_2023_42_1_a7
ER  - 
%0 Journal Article
%A M. S. Rasulov
%T Two free boundaries problem for a parabolic equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 108-121
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a7/
%G ru
%F VKAM_2023_42_1_a7
M. S. Rasulov. Two free boundaries problem for a parabolic equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 108-121. http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a7/

[1] Meirmanov A. M., Galtsev O. V., Galtseva O. A., “O suschestvovanii klassicheskogo resheniya v tselom po vremeni odnoi zadachi so svobodnoi granitsei”, Sib. matem. zhurn., 60:2 (2019), 419-428 DOI: 10.1134/S0037446619020137

[2] Crank J., Free and Moving Boundary Problem, Oxford, 1984, 425 pp.

[3] Friedman A., “Free boundary problems arising in biology”, Discrete and Continuous Dynamical Systems - B, 1:23 (2016), 193-202 DOI: 10.3934/dcdsb.2018013

[4] Gupta S. C., The Classical Stefan Problem: Basic concepts, modelling and analysis with quasi-analytical solutions and methods, Elservier, 2017, 717 pp.

[5] Takhirov J. O., “A free boundary problem for a reaction-diffusion equation in biology”, Indian J. Pure Appl. Math., 50 (2019), 95–112 DOI: 10.1007/s13226-019-0309-8 | DOI

[6] Du Y., Lin Zh., “Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary”, SIAM J.Math.Anal., 42 (2010), 377–405 DOI: 10.1137/090771089 | DOI

[7] Gu H, Lin Z. G and Lou B. D., “Long time behavior for solutions of Fisher-KPP equation with advection and free boundaries”, J. Funct. Anal., 269 (2015), 1714-1768, DOI: 0.1016/j.jfa.2015.07.002 | DOI

[8] Pan H., Ruixiang X., Bei Hu., “A free boundary problem with two moving boundaries modeling grain hydration”, Nonlinearity, 31 (2018), 3591-3616, DOI: 10.1088/1361-6544/aabf04 | DOI

[9] Rasulov M. S., “Problem for a quasilinear parabolic equation with two free boundaries”, Uzbek Mathematical Journal, 2 (2019), 89-102, DOI: 10.29229/uzmj.2019-2-11 | DOI

[10] Du Y., Bendong L., “Spreading and vanishing in nonlinear diffusion problems with free boundaries”, J. Eur. Math. Soc., 17 (2015), 2673–2724 DOI: 10.4171/JEMS/568 | DOI

[11] Briozzo A. Tarzia D., “A free boundary problem for a diffusion-convection equation”, International Journal of Non-Linear Mechanics, 120 (2020), 103394 | DOI

[12] Elmurodov A. N., Rasulov M. S., “On a uniqueness of solution for a reaction-diffusion type system with a free boundary,”, Lobachevskii Journal of Mathematics, 8:43 (2022), 2099-2106 DOI: 10.1134/S1995080222110087 | DOI

[13] Takhirov J. O., Rasulov M. S., “Problem with free boundary for systems of equations of reaction-diffusion type”, Ukr. Math. J, 2018, no. 69, 1968–1980 DOI: 10.1007/s11253-018-1481-4 | DOI

[14] Wang R., Wang L., Wang Zh., “Free boundary problem of a reaction-diffusion equation with nonlinear convection term”, J. Math.Anal.Appl., 2018, no. 467, 1233–1257 DOI:10.1016/j.jmaa.2018.07.065 | DOI

[15] Meirmanov A., Zadacha Stefana, Nauka, Novosibirsk, 1986, 240 pp.

[16] Takhirov Zh O., Turaev R. N., “Nelokalnaya zadacha Stefana dlya kvazilineinogo parabolicheskogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 60:28 (2012), 8–16 DOI: 10.14498/vsgtu1010 | DOI

[17] Kruzhkov S. N., “Nelineinye parabolicheskie uravneniya s dvumya nezavisimymi peremennymi”, Tr. MMO., 16:4 (1967), 329-346

[18] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1964, 428 pp.

[19] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp.