The cauchy problem for the delay differential equation with Dzhrbashyan – Nersesyan fractional derivative
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 98-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In recent, the number of works devoted to the study of problems for fractional order differential equations is growing noticeably. The interest of researchers is due to the fact that the number of areas of science in which equations containing fractional derivatives are used varies from biology and medicine to control theory, engineering, finance, as well as optics, physics, and so on. The inclusion of delay in the fractional order equation significantly affects the course of the process described by this equation, since the unknown function is given for different values of the argument, which includes a history effect into the equation. Therefore, mathematical models containing a fractional operator and a delay argument are more accurate than models containing integer derivatives. In this paper, we study the Cauchy problem for a linear ordinary delay differential equation with the Dzhrbashyan – Nersesyan fractional differentiation operator, which is generalizing the Riemann – Liouville and Gerasimov – Caputo fractional operators. The results of the work are obtained using the methods of the theory of integer and fractional calculus, methods of the theory of delay differential equations, the method of special functions. In this paper proves a theorem on the validity of an analogue of the Lagrange formula. It is also proved that the special function $W_{\gamma_m}(t)$, which is defined in terms of the generalized Mittag-Leffler function (or the Prabhakar function), satisfies the equation and conditions associated with the one under study, and is the fundamental solution of the considered equation. The main result is that the existence and uniqueness theorem to the initial value problem is proved. The solution to the problem is written out in terms of the special function $W_\nu(t)$.
Keywords: Dzhrbashyan – Nersesyan derivative, fractional differential equation, delay differential equation, fundamental solution, generalized Mittag – Leffler function.
Mots-clés : Lagrange formula
@article{VKAM_2023_42_1_a6,
     author = {M. G. Mazhgikhova},
     title = {The cauchy problem for the delay differential equation with {Dzhrbashyan} {\textendash} {Nersesyan} fractional derivative},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {98--107},
     year = {2023},
     volume = {42},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a6/}
}
TY  - JOUR
AU  - M. G. Mazhgikhova
TI  - The cauchy problem for the delay differential equation with Dzhrbashyan – Nersesyan fractional derivative
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 98
EP  - 107
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a6/
LA  - ru
ID  - VKAM_2023_42_1_a6
ER  - 
%0 Journal Article
%A M. G. Mazhgikhova
%T The cauchy problem for the delay differential equation with Dzhrbashyan – Nersesyan fractional derivative
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 98-107
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a6/
%G ru
%F VKAM_2023_42_1_a6
M. G. Mazhgikhova. The cauchy problem for the delay differential equation with Dzhrbashyan – Nersesyan fractional derivative. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 98-107. http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a6/

[1] Dzhrbashyan M. M., Nersesyan A. B., “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. Akad. Nauk Arm. SSR., 36:1 (1968), 3–29

[2] Pskhu A. V., “The fundamental solution of a diffusion-wave equation of fractional order”, Izv. Math., 73:2 (2009), 351–392 | DOI

[3] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Factional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp.

[5] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, Moskva, 2005, 199 pp.

[6] Oldham K. B., Spanier J., The fractional calculus, Acad. press., N.-Y. L., 1974, 234 pp.

[7] Barrett J. H., “Differential equation of non-integer order”, Canad. J. Math., 6:4 (1954), 529–541 | DOI

[8] Pskhu A. V., “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sb. Math., 202:4 (2011), 571–582 | DOI

[9] Fedorov V. E., Plekhanova M. V., Izhberdeeva E. M., “Initial value problems of linear equations with the Dzhrbashyan – Nersesyan derivative in Banach spaces”, Symmetry., 13:6 (2021), 1058 | DOI

[10] Volkova A. R., IzhberdeevaE. M., Fedorov V. E., “Nachalnye zadachi dlya uravnenii s kompozitsiei drobnykh proizvodnykh”, Chelyab. fiz.-matem. zhurn., 6:3 (2021), 269–277 | DOI

[11] Bogatyreva F. T., “Nachalnaya zadacha dlya uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Vest. KRAUNTs. Fiz.-mat. nauki., 16:4–1 (2016), 21–26

[12] Bellman R. E., Cooke K. L., Differential-Difference Equations, Acad. Press., New York. London., 1963, 462 pp.

[13] Hale J. K, Lunel S. M. V., Introduction to Functional Differential Equations, Springer, New York. London., 1993, 449 pp.

[14] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, Moskva, 1971, 296 pp.

[15] Myshkis A.D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, Moskva, 1972, 351 pp.

[16] Norkin S. B., “O resheniyakh lineinogo odnorodnogo differentsialnogo uravneniya vtorogo poryadka s zapazdyvayuschim argumentom”, UMN, 14. 1:85 (1959), 199–206

[17] Mazhgikhova M. G., “Zadacha Koshi dlya obyknovennogo differentsialnogo uravneniya s operatorom Rimana-Liuvillya s zapazdyvayuschim argumentom”, Izvestiya KBNTs RAN, 75:1 (2017), 24–28

[18] Mazhgikhova M. G., “Nachalnaya i kraevaya zadachi dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka s zapazdyvayuschim argumentom”, Chelyabinskii Fiziko-Matematicheskii Zhurnal, 3:1 (1968), 27–37

[19] Mazhgikhova M. G., “Dirichlet problem for a fractional-order ordinary differential equation with retarded argument”, Differential equations, 54:2 (2018), 187–194 | DOI

[20] Prabhakar T. R., “A singular integral equation with a generalized Mittag-Leffler function in the kernel”, Yokohama Math. J., 19 (1971), 7–15

[21] Naimark M. A., Lineinye differentsialnye operatory, Nauka, Moskva, 1969, 528 pp.