On the adjoint problem in a domain with deviation out from the characteristic for the mixed parabolic-hyperbolic equation with the fractional order operator
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 80-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, it was proved the classical, strong solvability and Volterra property of the adjoint problem with departure from the characteristic for an equation of mixed parabolic-hyperbolic type with a fractional order operator in the sense of Gerasimov-Caputo. The aim of the research is to solve the conjugate problem for the equation of a mixed parabolic-hyperbolic type of fractional order. Taking into account the properties of fractional order operators, the adjoint operator is found and the statements of the adjoint problem are applied. To study the formulated problem in the parabolic part of the mixed domain, the first boundary value problem for a parabolic type equation of fractional order in the sense of Gerasimov-Caputo is solved. Using the properties of the Wright function, a functional relation is obtained on the transition line. In the same way, solving the Cauchy problem with the hyperbolic part of the mixed domain, we find a functional relation. Consequently, the problem posed reduces in an equivalent way to a Volterra integral equation of the second kind with a weak singularity. According to the theory of Volterra integral equations of the second kind, the unique solvability of the resulting equation is proved. In addition, using the methods of integro-differentiation operators of fractional order, the theory of special functions, a priori estimates, the theory of integral equations, uniqueness, existence and Volterra theorems for the adjoint problem in a domain with deviation out of the characteristic for a mixed-type equation of fractional order are proved. The results obtained are new and differ from the results of M. A. Sadybekov and A. S. Berdyshev.
Keywords: local boundary conditions, fractional order equation, Wright and Green's function, strong solvability, deviation out from characteristic.
@article{VKAM_2023_42_1_a5,
     author = {B. I. Islomov and I. A. Akhmadov},
     title = {On the adjoint problem in a domain with deviation out from the characteristic for the mixed parabolic-hyperbolic equation with the fractional order operator},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {80--97},
     year = {2023},
     volume = {42},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a5/}
}
TY  - JOUR
AU  - B. I. Islomov
AU  - I. A. Akhmadov
TI  - On the adjoint problem in a domain with deviation out from the characteristic for the mixed parabolic-hyperbolic equation with the fractional order operator
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 80
EP  - 97
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a5/
LA  - ru
ID  - VKAM_2023_42_1_a5
ER  - 
%0 Journal Article
%A B. I. Islomov
%A I. A. Akhmadov
%T On the adjoint problem in a domain with deviation out from the characteristic for the mixed parabolic-hyperbolic equation with the fractional order operator
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 80-97
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a5/
%G ru
%F VKAM_2023_42_1_a5
B. I. Islomov; I. A. Akhmadov. On the adjoint problem in a domain with deviation out from the characteristic for the mixed parabolic-hyperbolic equation with the fractional order operator. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 80-97. http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a5/

[1] Nakhushev A. M., Salakhitdinov M. S., “O zakone kompozitsii operatorov drobnogo integrodifferentsirovaniya s razlichnymi”, Doklady AN SSSR, 289:4 (1998), 1313-1316

[2] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh primeneniya, Izd. KBNTs, Nalchik, 2000, 299 pp.

[3] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006

[4] Hardy G., Littlewood J. E., “Some properties of fractional integrals”, Math. Z., 6 (1928), 565-606 | DOI

[5] Love E. R., “A third index law for fractional integrals and derivatives”, Fractional Calculus: Res. Notes Math., 1985, 63-74, Boston | Zbl

[6] Saigo M., “On the Holder continuity of the generalized fractional integrals and derivatives”, Math. Rep. Kyushu Univ, 12:2 (1980), 55–62 | Zbl

[7] Salakhitdinov M. S., Islomov B. I., Uravneniya smeshannogo tipa s dvumya liniyami vyrozhdeniya, Tashkent, 2009, 264 pp.

[8] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Moskva, 1983, 424 pp.

[9] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Moskva, 2005, 199 pp.

[10] Samko S. G., Kilbas A. A., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Minsk, 1987, 688 pp.

[11] Eleev V. A., “Analog zadachi Trikomi dlya smeshannykh parabologiper-bolicheskikh uravnenii s nekharakteristicheskoi liniei izmeneniya”, Differentsialnye uravneniya, 13:1 (1977), 56–163

[12] Kapustin N. Yu., “Otsenka resheniya zadachi Trikomi dlya sistemy uravnenii parabolo-giperbolicheskogo tipa”, Dokl. AN SSSR, 265:3 (1982), 524-525 | Zbl

[13] Sabitov K. B., “K teorii uravnenii smeshannogo parabolo-giperboliches-kogo tipa so spektralnym parametrom.”, Differentsialnye uravneniya, 25:1 (1989), 117-126 | Zbl

[14] Berdyshev A. S., Kraevye zadachi i ikh spektralnye svoistva dlya uravneniya smeshannogo parabolo-giperbolicheskogo i smeshannogo-sostavnogo tipov, Almaty, 2015, 224 pp.

[15] Ilin V. A., “Edinstvennost i prinadlezhnost klassicheskogo resheniya smeshannoi zadachi dlya samosopryazhennogo giperbolicheskogo uravneniya”, Matematicheskie zametka, 17:1 (1975), 93-103

[16] Nersesyan A. B., “K teorii integralnykh uravnenii tipa Volterra”, Dokl. AN SSSR, 155:5 (1964), 1006-1009 | Zbl

[17] Sadybekov M. A., Kraevye zadachi v oblastyakh s otkhodom ot kharakteristiki dlya uravnenii giperbolicheskogo i smeshannogo tipov vtorogo poryadka, Dokt.diss. Tashkent, 1993

[18] Karimov E. T., Akhatov J. S., “A boundary problem with integral gluing condition for a parabolic-hyperbolic equation involving the Caputo fractional derivative”, Electronic Journal of Differential Equations, 2014:14 (2014), 1–6.

[19] Islomov B. I., Ubaidullaev U. Sh., “Kraevaya zadacha dlya uravneniya parabolo - giperbolicheskogo tipa s operatorom drobnogo poryadka v smysle Kaputo v pryamougolnoi oblasti.”, Nauchnyi vestnik. Matematika, 2017, no. 5, 25-30

[20] Islomov B. I. , Abdullaev O. Kh., “O nelokalnykh zadachakh dlya uravneniya tretego poryadka s operatorom Kaputo i nelineinoi nagruzhennoi chastyu”, Ufimsk. matem. zhurn., 13:3 (2021), 45–57 | Zbl

[21] Mikhlin S. G., Lektsii lineinym integralnym uravneniyam, Moskva, 1959, 232 pp.