On a nonlocal boundary value problem of periodic type for the three-dimensional mixed-type equations of the second kind in an infinite parallelepiped
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 58-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As is known, A.V. Bitsadze in his studies pointed out that the Dirichlet problem for a mixed-type equation, in particular for a degenerate hyperbolic-parabolic equation, is ill-posed. The question naturally arises: is it possible to replace the conditions of the Dirichlet problem with other conditions covering the entire boundary, which will ensure the well-posedness of the problem? For the first time, such boundary value problems (nonlocal boundary value problems) for a mixed-type equation were proposed and studied in the works of F.I. Frankl when solving the gas-dynamic problem of subsonic flow around airfoils with a supersonic zone ending in a direct shock wave. Problems close in formulation to a mixed-type equation of the second order were considered in the studies by A.N. Terekhov, S.N. Glazatov, M.G. Karatopraklieva and S.Z. Dzhamalov. In these papers, nonlocal boundary value problems in bounded domains are studied for a mixed-type equation of the second kind of the second order. Such problems for a mixed-type equation of the first kind in the three-dimensional case (in particular, for the Tricomi equation) in unbounded domains are studied in the works of S.Z. Dzhamalov and H. Turakulov. For mixed-type equations of the second kind in unbounded domains, nonlocal boundary value problems in the multidimensional case are practically not studied. In this article, nonlocal boundary value problem of periodic type for a mixed-type equation of the second kind of the second order, is formulated and studied in an unbounded parallelepiped. To prove the uniqueness of the generalized solution, the method of energy integrals is used. To prove the existence of a generalized solution, the Fourier transforms is used and as a result, a new problem is obtained on the plane. And for the solvability of this problem, the methods of "$\epsilon$-regularization"and a priori estimates are used. The uniqueness, existence, and smoothness of a generalized solution of a nonlocal boundary value problem of periodic type for a three-dimensional mixed-type equation of the second kind of the second order are proved using above-mentioned methods and Parseval equality.
Keywords: mixed-type equation of the second kind, nonlocal boundary value problem, methods of "$\epsilon$-regularization"and a priori estimates.
Mots-clés : Fourier transform
@article{VKAM_2023_42_1_a3,
     author = {S. Z. Djamalov and B. K. Sipatdinova},
     title = {On a nonlocal boundary value problem of periodic type for the three-dimensional mixed-type equations of the second kind in an infinite parallelepiped},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {58--68},
     year = {2023},
     volume = {42},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a3/}
}
TY  - JOUR
AU  - S. Z. Djamalov
AU  - B. K. Sipatdinova
TI  - On a nonlocal boundary value problem of periodic type for the three-dimensional mixed-type equations of the second kind in an infinite parallelepiped
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 58
EP  - 68
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a3/
LA  - ru
ID  - VKAM_2023_42_1_a3
ER  - 
%0 Journal Article
%A S. Z. Djamalov
%A B. K. Sipatdinova
%T On a nonlocal boundary value problem of periodic type for the three-dimensional mixed-type equations of the second kind in an infinite parallelepiped
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 58-68
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a3/
%G ru
%F VKAM_2023_42_1_a3
S. Z. Djamalov; B. K. Sipatdinova. On a nonlocal boundary value problem of periodic type for the three-dimensional mixed-type equations of the second kind in an infinite parallelepiped. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 58-68. http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a3/

[1] Bitsadze A.V., “Nekorrektnost zadachi Dirikhle dlya uravnenii smeshannogo tipa”, DAN SSSR, 122:2 (1953), 167-170

[2] Frankl F. I., “O zadachakh Chaplygina dlya smeshannykh do - i sverkh zvukovykh techenii”, Izv.AN SSSR Ser. matem., 9:2 (1945), 121-143 | Zbl

[3] Glazatov S. N., “Nelokalnye kraevye zadachi dlya uravnenii smeshannogo tipa v pryamougolnike”, Sib. mat. zhurn, 26:6 (1985), 162-164 | Zbl

[4] Karatopraklieva M. G., “Ob odnoi nelokalnoi kraevoi zadache dlya uravneniya smeshannogo tipa”, Differentsialnye uravneniya, 27:1 (1991), 68-79 | Zbl

[5] Dzhamalov S. Z., “O korrektnosti odnoi nelokalnoi kraevoi zadachi s postoyannymi koeffitsientami dlya uravneniya smeshannogo tipa vtorogo roda vtorogo poryadka v prostranstve”, Mat. zametki SVFU, 2017, no. 4, 17-28

[6] Dzhamalov S. Z., “O gladkosti odnoi nelokalnoi kraevoi zadachi dlya mnogomernogo uravneniya smeshannogo tipa vtorogo roda v prostranstve.”, Zhurnal Srednevolzhskogo mat obschestva, 21:1 (2019), 24-33

[7] Vragov V. N., Kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, NGU, Novosibirsk, 1983

[8] Lions Zh.L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya., Mir, M., 1971

[9] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M, 1965

[10] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977

[11] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, M., 1973,, 407 pp.

[12] Kozhanov A.I., Kraevye zadachi dlya uravnenii matematicheskoi fiziki nechetnogo poryadka, NGU, Novosibirsk, 1990