The problem for a mixed equation with fractional power of the Bessel operator
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 37-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently, of particular interest are partial differential equations containing a fractional order differential operator. Similar equations and problems for them find application in the theory of viscous elasticity, electrochemistry, control theory, modeling of epidemics and pandemics, and in various other areas. The present work is devoted to the solution of differential equations containing the Bessel operator of fractional degree. The article discusses the direct and inverse Meyer transforms, modified for the convenience of working with the Bessel operator of a fractional degree. For the considered Meyer transformation, a convolution is obtained. Using the Laplace and Poisson transformations, factorizations of the direct and inverse Meyer transformations are obtained. Using the considered modified Meyer transform, we find a solution to an ordinary differential equation with a Bessel operator of fractional degree. A nonlocal boundary value problem for a mixed parabolic-hyperbolic equation containing a fractional degree Bessel operator is considered. It is proved that, under certain conditions of smoothness of the input functions of the problem and the condition of conjugation on the dividing line of the regions of hyperbolicity and parabolicity, a regular solution of a nonlocal boundary value problem for a mixed parabolic-hyperbolic equation with a Bessel operator of fractional degree exists and is unique.
Keywords: the Meyer transform, the Bessel operator of fractional degree, ordinary differential equations of fractional order, partial differential equations of fractional order.
@article{VKAM_2023_42_1_a2,
     author = {A. V. Dzarakhohov and E. L. Shishkina},
     title = {The problem for a mixed equation with fractional power of the {Bessel} operator},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {37--57},
     year = {2023},
     volume = {42},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a2/}
}
TY  - JOUR
AU  - A. V. Dzarakhohov
AU  - E. L. Shishkina
TI  - The problem for a mixed equation with fractional power of the Bessel operator
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 37
EP  - 57
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a2/
LA  - ru
ID  - VKAM_2023_42_1_a2
ER  - 
%0 Journal Article
%A A. V. Dzarakhohov
%A E. L. Shishkina
%T The problem for a mixed equation with fractional power of the Bessel operator
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 37-57
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a2/
%G ru
%F VKAM_2023_42_1_a2
A. V. Dzarakhohov; E. L. Shishkina. The problem for a mixed equation with fractional power of the Bessel operator. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 37-57. http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a2/

[1] Bzhikhatlov Kh. G., Nakhushev A. M., “Ob odnoi kraevoi zadache dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Dokl. AN SSSR, 183:2 (1968), 261–264

[2] Repin O. A., Kilbas A. A., “Analog zadachi Bitsanze–Samarskogo dlya uravneniya smeshannogo tipa s drobnoi proizvodnoi”, Differentsialnye uravneniya, 39:5 (2003), 638–644 | Zbl

[3] Voroshilov A. A., Kilbas A. A., “Zadacha Koshi dlya diffuzionno-volnovogo uravneniya s chastnoi proizvodnoi Kaputo”, Differentsialnye uravneniya, 42:5 (2006), 599–609 | Zbl

[4] Khubiev K. U., “Zadachi so smescheniem dlya nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa s operatorom drobnoi diffuzii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:1 (2018), 82–90 | Zbl

[5] Sprinkhuizen-Kuyper I. G., “A fractional integral operator corresponding to negative powers of a certain second-order differential operator”, J. Math. Analysis and Applications, 72 (1979), 674–702 | DOI | Zbl

[6] McBride A. C., Fractional calculus and integral transforms of generalized functionsFractional calculus and integral transforms of generalized functions, Pitman, London, 1979, 179 pp.

[7] Shishkina E. L. and Sitnik S. M., “On fractional powers of Bessel operators”, Journal of Inequalities and Special Functions, Special issue to honor Prof. Ivan Dimovski's contributions, 8:1 (2017), 49–67

[8] Kilbas A. A., Saigo M., H–Transforms. Theory and Applications, Boca Raton, Florida: Chapman and Hall, 2004, 408 pp. | Zbl

[9] Glaeske H. J., Prudnikov A. P., Skornik K. A., Operational calculus and related topics, Boca Raton, Florida: Chapman and Hall, 2006, 424 pp. | Zbl

[10] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, Vol. 2, Special Functions, Gordon Breach Sci. Publ., New York, 1992, 808 pp.

[11] Shishkina E. L. and Sitnik S. M., “A fractional equation with left-sided fractional Bessel derivatives of Gerasimov-Caputo type”, Mathematics, 7:12 (2019), 21 | DOI

[12] Shishkina E. L. and Sitnik S. M., Transmutations, singular and fractional differential equations with applications to mathematical physics, Academic Press, Cambridge, 2020, 592 pp. | Zbl

[13] Watson G. N., A Treatise on the Theory of Bessel Functions, University Press, Cambridge, 1922, 804 pp.

[14] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006, 523 pp. | Zbl