Algorithms for сonstructing matrixes of routes of pipeline networks by using the method of graph theory
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 207-222 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The use of information technology tools and the level of automation of management processes significantly increase the role of technical progress and solve the tasks set by the Republic of Uzbekistan to provide the population with the target product. At the same time, the capabilities of modern computer systems and the development of mathematical modeling methods are far from being fully used due to the informalization of many tasks, as well as the imperfection or absence of a number of algorithms that make it possible to analyze the functioning of an object, process incoming information and make appropriate decisions on the optimal control of multiply connected systems. . In this regard, the development and research of computer models, computational algorithms and, on their basis, the creation of object-oriented software in this direction seems to be an urgent problem for the further development of automation of scientific research for various subject areas, in particular pipeline systems. Any real energy network, including a gas network, is equivalent in its topological structure to a certain graph. It is difficult to calculate and analyze the inconsistency of the initial information of networks with more than one ring. In these cases, it is necessary to turn to Kirchhoff's laws and the corresponding closing relations. However, the network topology is diverse, as evidenced, in particular, by the schemes of urban heating networks. In such conditions, the main burden of hydraulic or economic calculation should be concentrated on the stage of network topology formation, for which graph theories are used. This article discusses algorithms for constructing and optimizing the functioning of gas pipeline multiloop networks using the graph theory method and software for optimal control, analysis and synthesis of pipeline systems. Thus, the developed computational algorithms and a computer calculation program can be used to optimize the operation of gas pipeline networks when the network has a complex radiant and multi-ring structure.
Keywords: mathematical model, gas pipeline, multi-circuit network, algorithm, pipeline systems, gas consumption, gas, numerical method, graphs, program.
Mots-clés : gas transport
@article{VKAM_2023_42_1_a14,
     author = {B. E. Yuldashev and R. I. Khurramova},
     title = {Algorithms for {\cyrs}onstructing matrixes of routes of pipeline networks by using the method of graph theory},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {207--222},
     year = {2023},
     volume = {42},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a14/}
}
TY  - JOUR
AU  - B. E. Yuldashev
AU  - R. I. Khurramova
TI  - Algorithms for сonstructing matrixes of routes of pipeline networks by using the method of graph theory
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 207
EP  - 222
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a14/
LA  - ru
ID  - VKAM_2023_42_1_a14
ER  - 
%0 Journal Article
%A B. E. Yuldashev
%A R. I. Khurramova
%T Algorithms for сonstructing matrixes of routes of pipeline networks by using the method of graph theory
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 207-222
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a14/
%G ru
%F VKAM_2023_42_1_a14
B. E. Yuldashev; R. I. Khurramova. Algorithms for сonstructing matrixes of routes of pipeline networks by using the method of graph theory. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 207-222. http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a14/

[1] Akbasov A. R., Razrabotka intellektualnoi sistemy upravleniya teplovymi setyami goroda, Dis. soisk. stepeni dok. PhD, Alma-aty, Kazakhskii nats.tekh. univer. im. K. I. Satpaeva, 2011, 110 pp.

[2] Ionin A. A., Gazosnabzhenie, Ucheb. dlya VUZov, Stroiizdat, M., 1989, 438 pp.

[3] Меренков А. П., Хаселев В. Я. Teoriya gidravlicheskikh tsepei, Nauka, M., 1985, 278 pp.

[4] Sennova E. V., Sidler V. G., Matematicheskoe modelirovanie i optimizatsiya razvivayuschikhsya teplosnabzhayuschikh sistem, Nauka. Sib. otd-nie, Novosibirsk, 1987., 222 pp.

[5] Smirnov V. A., Gerchikov S. V., Primenenie sovremennoi vychislitelnoi tekhniki v gorodskom gazosnabzhenii, Izd-vo literatury po stroitelstvu, M., 1970, 170 pp.

[6] Ходжаев Ш. Т. Modeli, algoritmy funktsionirovaniya i operativnogo upravleniya ob'ektami gazosnabzheniya (na primere Samarkandskoi oblasti), Diss... kand. tekhn. nauk, Institut matematiki i informatsionnykh tekhnologii AN RUz, Tashkent, 2012, 165 pp.

[7] Хужаев И. К., Юлдашев Б. Э., Куканова М. А. “Gidravlicheskii raschet koltsevogo gazoprovoda pri nalichii uchastka s ravnomernym putevym otborom”, Krasnoyarsk: Nauka Krasnoyarya, 2012, no. 3(03), 39-47

[8] Yuldashev B. E., “Sozdanie kompyuternoi modeli dlya gidravlicheskogo rascheta koltsevoi seti gazoprovodov s odnim uzlom podvoda”, Nauchno-prakticheskii zhurnal \guillemotleft Otraslevye aspekty tekhnicheskikh nauk\guillemotright , 2012, no. 3(15), 37-40

[9] Sadullaev R., Yuldashev B. E., “Postroenie algoritma trassirovki i informatsionnogo obespecheniya truboprovodnykh sistem”, Algoritmy, metody i sistemy obrabotki dannykh, 2005, no. 10, 110-118

[10] Юлдашев Б. Э. Создание компьютерной модели для оптимизации функционирования газопроводных сетей со сложной лучистой и многокольцевой структурами Zhurnal \guillemotleft Gazovaya promyshlennost\guillemotright , 2014, no. 8(710), 86-90