@article{VKAM_2023_42_1_a11,
author = {Kh. T. Alimov and F. Kh. Dzamikhova and R. I. Parovik},
title = {Fractional mathematical model {Mcsherry}},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {164--179},
year = {2023},
volume = {42},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a11/}
}
TY - JOUR AU - Kh. T. Alimov AU - F. Kh. Dzamikhova AU - R. I. Parovik TI - Fractional mathematical model Mcsherry JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2023 SP - 164 EP - 179 VL - 42 IS - 1 UR - http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a11/ LA - ru ID - VKAM_2023_42_1_a11 ER -
Kh. T. Alimov; F. Kh. Dzamikhova; R. I. Parovik. Fractional mathematical model Mcsherry. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 164-179. http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a11/
[1] Davey P., “A new physiological method for heart rate correction of the QT interval”, Heart, 82:2 (1999), 183-186 | DOI
[2] Schwartz P. J., Wolf S., “QT interval prolongation as predictor of sudden death in patients with myocardial infarction”, Circulation, 57:6 (1978), 1074-1077 | DOI
[3] McSharry P. E., Clifford G. D., Tarassenko L., Smith L. A., “A dynamical model for generating synthetic electrocardiogram signals”, IEEE transactions on biomedical engineering., 50:3 (2003), 289-294 | DOI
[4] Martsenyuk V. P., Sarabun R. O., “Issledovanie nelineinoi dinamiki v modeli MakSherri na osnove eksponent Lyapunova”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyi analiz i informatsionnye tekhnologii, 2014, no. 2, 57-61
[5] Oldham K., Spanier J., The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, London, 1974, 240 pp.
[6] Miller K., Ross B., An Introduction to the Fractional Calculus and Fractional Differntial Equations, A Wiley-Interscience Publication, New York, 1993, 384 pp.
[7] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.
[8] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, v. 204, Elsevier, 2006, 523 pp.
[9] Pskhu A. V., Rekhviashvili S. S., “Analysis of forced oscillations of a fractional oscillator”, Technical Physics Letters, 44 (2018), 1218-1221 | DOI
[10] Parovik R. I., “Quality factor of forced oscillations of a linear fractional oscillator”, Technical Physics, 65:7 (2020), 1015-1019 | DOI
[11] Volterra V., Functional theory, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp.
[12] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 510 pp.
[13] Parovik R.I., “Fractal parametric oscillator as a model of a nonlinear oscillation system in natural mediums”, Int. J. Communications, Network and System Sciences, 6:3 (2013), 134-138 | DOI
[14] Parovik R.I., “On a finite-difference scheme for an hereditary oscillatory equation”, Journal of Mathematical Sciences, 253:4 (2021), 547-557 | DOI
[15] Parovik R.I., “Mathematical models of oscillators with memory”, Oscillators-Recent Developments, London, 2019, 3-21
[16] Tavazoei M. S. Haeri, M., “Chaotic attractors in incommensurate fractional order systems”, Physica D: Nonlinear Phenomena, 237 (2008), 2628–2637 | DOI
[17] Ortigueira M. D., Valerio D., Machado J. T., “Variable order fractional systems”, Communications in Nonlinear Science and Numerical Simulation, 71 (2019), 231–243 | DOI
[18] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6(1):23 (2022), 1–27