Fractional mathematical model Mcsherry
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 164-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article proposes a generalization of the McSherry mathematical model for modeling an artificial electrocardiogram — a time-varying signal that reflects the ion current that causes the heart fibers to contract and then relax. The generalization of the McSherry mathematical model consists in taking into account the property of heredity (memory) of the dynamic process, which can be described using fractional derivatives in the sense of Gerasimov-Caputo. The memory effect of a dynamic system determines the possibility of dependence of its states on the prehistory and may indicate the dissipative nature of the process under consideration. Further, using the theory of finite-difference schemes, an explicit finite-difference scheme of the first order of accuracy is constructed to find a numerical solution of the proposed model. With the help of the algorithm, the simulation results are visualized: oscillograms and phase trajectories are built for different values of the model parameters for a healthy person. The simulation results are interpreted. It is shown that the orders of fractional derivatives affect the dynamic modes of the considered fractional dynamical system. In the case of a commensurate fractional dynamical system, the limit cycle begins to collapse when the orders of the fractional derivatives are less than 0.5. In this case, the role of dissipation plays a significant role. In the case of an incommensurable fractional dynamical system, various regimes can arise from limit cycles to damped ones, and chaotic regimes are also possible. It was shown in the work that a chaotic regime arises at sufficiently large values of the angular velocity. The study of chaotic regimes deserves special attention and will be considered in the following articles. Also, the orders of fractional derivatives can be considered as additional degrees for the parameterization of ECG signals.
Keywords: mathematical model, ECG, numerical analysis, derivative of the Gerasimov-Caputo type, oscillograms, phase trajectories.
@article{VKAM_2023_42_1_a11,
     author = {Kh. T. Alimov and F. Kh. Dzamikhova and R. I. Parovik},
     title = {Fractional mathematical model {Mcsherry}},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {164--179},
     year = {2023},
     volume = {42},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a11/}
}
TY  - JOUR
AU  - Kh. T. Alimov
AU  - F. Kh. Dzamikhova
AU  - R. I. Parovik
TI  - Fractional mathematical model Mcsherry
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 164
EP  - 179
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a11/
LA  - ru
ID  - VKAM_2023_42_1_a11
ER  - 
%0 Journal Article
%A Kh. T. Alimov
%A F. Kh. Dzamikhova
%A R. I. Parovik
%T Fractional mathematical model Mcsherry
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 164-179
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a11/
%G ru
%F VKAM_2023_42_1_a11
Kh. T. Alimov; F. Kh. Dzamikhova; R. I. Parovik. Fractional mathematical model Mcsherry. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 164-179. http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a11/

[1] Davey P., “A new physiological method for heart rate correction of the QT interval”, Heart, 82:2 (1999), 183-186 | DOI

[2] Schwartz P. J., Wolf S., “QT interval prolongation as predictor of sudden death in patients with myocardial infarction”, Circulation, 57:6 (1978), 1074-1077 | DOI

[3] McSharry P. E., Clifford G. D., Tarassenko L., Smith L. A., “A dynamical model for generating synthetic electrocardiogram signals”, IEEE transactions on biomedical engineering., 50:3 (2003), 289-294 | DOI

[4] Martsenyuk V. P., Sarabun R. O., “Issledovanie nelineinoi dinamiki v modeli MakSherri na osnove eksponent Lyapunova”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyi analiz i informatsionnye tekhnologii, 2014, no. 2, 57-61

[5] Oldham K., Spanier J., The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, London, 1974, 240 pp.

[6] Miller K., Ross B., An Introduction to the Fractional Calculus and Fractional Differntial Equations, A Wiley-Interscience Publication, New York, 1993, 384 pp.

[7] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[8] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, v. 204, Elsevier, 2006, 523 pp.

[9] Pskhu A. V., Rekhviashvili S. S., “Analysis of forced oscillations of a fractional oscillator”, Technical Physics Letters, 44 (2018), 1218-1221 | DOI

[10] Parovik R. I., “Quality factor of forced oscillations of a linear fractional oscillator”, Technical Physics, 65:7 (2020), 1015-1019 | DOI

[11] Volterra V., Functional theory, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp.

[12] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 510 pp.

[13] Parovik R.I., “Fractal parametric oscillator as a model of a nonlinear oscillation system in natural mediums”, Int. J. Communications, Network and System Sciences, 6:3 (2013), 134-138 | DOI

[14] Parovik R.I., “On a finite-difference scheme for an hereditary oscillatory equation”, Journal of Mathematical Sciences, 253:4 (2021), 547-557 | DOI

[15] Parovik R.I., “Mathematical models of oscillators with memory”, Oscillators-Recent Developments, London, 2019, 3-21

[16] Tavazoei M. S. Haeri, M., “Chaotic attractors in incommensurate fractional order systems”, Physica D: Nonlinear Phenomena, 237 (2008), 2628–2637 | DOI

[17] Ortigueira M. D., Valerio D., Machado J. T., “Variable order fractional systems”, Communications in Nonlinear Science and Numerical Simulation, 71 (2019), 231–243 | DOI

[18] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6(1):23 (2022), 1–27