On some new results in large area Nevanlinna spaces in the unit disk
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 150-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study of various infinite products in various spaces of analytic functions in the unit disk is a well known and well studied problem of complex function theory in the unit disk. The goal of our paper is to study so-called Blashcke type products in new large, general analytic area Nevanlinna spaces in the unit disk.A new approach is suggested in this paper, namely we prove, use and apply various new embedding theorems which relate new general, large analytic area Nevanlinna spaces with less general well-studied and wellknown such type analytic spaces in the unit disk. Our theorems can be applied or can be used even in more general situation, when we consider large, general analytic area Nevanlinna spaces not in the unit disk, but in the circular ring.In our paper, using same approach new parametric representations of mentioned large, general analytic area Nevanlinna spaces are presented. These results also can be applied or used in the future to obtain more general theorems on parametric representations of mentioned large,general area Nevanlinna type spaces not in the unit disk, but in more general circular domains.
Keywords: Blaschke type infinite products, area Nevanlinna – type spaces, Nevanlinna characteristic, parametric representations, analytic function.
@article{VKAM_2023_42_1_a10,
     author = {R. F. Shamoyan and O. Mihic},
     title = {On some new results in large area {Nevanlinna} spaces in the unit disk},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {150--163},
     year = {2023},
     volume = {42},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a10/}
}
TY  - JOUR
AU  - R. F. Shamoyan
AU  - O. Mihic
TI  - On some new results in large area Nevanlinna spaces in the unit disk
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 150
EP  - 163
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a10/
LA  - en
ID  - VKAM_2023_42_1_a10
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%A O. Mihic
%T On some new results in large area Nevanlinna spaces in the unit disk
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 150-163
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a10/
%G en
%F VKAM_2023_42_1_a10
R. F. Shamoyan; O. Mihic. On some new results in large area Nevanlinna spaces in the unit disk. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 150-163. http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a10/

[1] Bergh J., Lofstrom J., Interpolation spaces, Springer Verlag, New York, 1976 | Zbl

[2] Djrbashian M. M., Shamoian F. A., Topics in the Theory of $A^{p}_{\alpha}$ Spaces, Leipzig, Teubner, 1988 | Zbl

[3] Djrbashian M. M, Integral'nyye preobrazovaniya i predstavleniye funktsiy na kompleksnoy ploskosti [Integral transforms and representation of functions in complex plane], Nauka, Moscow, 1966, 624 pp. (In Russian)

[4] Djrbashian M. M. , Zakharyan V., Klassy i granichnyye svoystva meromorfnykh v kruge funktsiy [Classes and boundary properties of functions that are meromorphic in the disk], Nauka, Moscow, 1993 (In Russian)

[5] Hayman W., Meromorphic functions, Oxford University Press, 1964 | Zbl

[6] Jevtić M., Pavlović M. , Shamoyan R., “A note on diagonal mapping theorem in spaces of analytic functions in the unit polydisk”, Publ. Math. Debrecen, 74/1-2 (2009), 1–14 | DOI

[7] Mazya V., Sobolev Spaces, Springer-Verlag, New York, 1985 | Zbl

[8] Shamoyan F. A., “Parametric representation and description of the root sets of weighted classes of functions holomorphic in the disk”, Siberian Math. Journal, 40 (6) (1999), 1211–1229. | DOI | Zbl

[9] Shamoyan F. A., Shubabko E. N., “Parametric representations of some classes of holomorphic functions in the disk”, Complex analysis, operators and related topics Operator theory Adv. applications, 113 (2000), 331–338 | Zbl

[10] ShamoyanR. F., “On multipliers from Bergman type spaces into Hardy spaces in the polydisc”, Ukrainian. Math. Journal, 10 (2000), 1405–1415

[11] Shamoyan R., Arsenović M., “On zero sets and parametric representations of some new analytic and meromorphic function spaces in the unit disk”, Filomat, 25(3) (2011), 1–14 | DOI | Zbl

[12] Shamoyan R., Li H., “Descriptions of zero sets and parametric representations of certain analytic area Nevanlinna type classes in disk”, Proceedings Razmadze Mathematical Institute, 151 (2009), 103-108 | Zbl

[13] Shamoyan R., Li H., “Descriptions of Zero Sets and Parametric Representations of Certain Analytic Area Nevanlinna Type Classes in the Unit Disk”, Kragujevac Journal of Mathematics, 34 (2010), 73-89 | Zbl

[14] Shamoyan R., Mihić O., “On zero sets and embeddings of some new analytic function spaces in the unit disc”, Kragujevac Journal of Mathematics, 38(2) (2014), 229-244 | DOI | Zbl

[15] Shamoyan R. , Mihić O., “On zeros of some analytic spaces of area Nevanlinna type in a halfplane”, Trudy of Petrozavodsk State University, 17 (2010), 67–72

[16] Shvedenko S. V., “Hardy classes and related spaces of analytik functions in the unit disk, polydisc and unit ball”, Seria Matematika, VINITI, 1985, 3–124 (In Russian) | Zbl