On some boundary value problems with a shift for a mixed type equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 27-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An important stage in the development of the theory of boundary value problems was the proposed by A.M. Nakhushev in 1969, non-local problems of a new type, which were later called in our country boundary value problems with a shift, and abroad – Nakhushev problems (problems). They are a generalization of the Tricomi problem, and also contain a wide class of well-posed self-adjoint problems. These problems immediately aroused great interest of many authors. In recent years, studies of problems with a shift for equations of mixed type have been carried out especially intensively. But in these works, the boundary conditions, as a rule, contain classical operators, while non-local boundary value problems contain operators of a more complex structure and operators of fractional integro-differentiation. In this paper, we study the unique solvability of problems with mixing for an equation of mixed elliptic-hyperbolic type. Under constraints of unequal type on known functions and different orders of fractional differentiation operators in the boundary condition, uniqueness theorems are proved. The existence of a solution to the problems is proved by reducing the problems to Fredholm equations of the second kind, the unconditional solvability of which follows from the uniqueness of the solution to the problems.
Keywords: problem with shift, Cauchy problem, Dirichlet problem, fractional differentiation operator, fractional integration operator, Fredholm equation, singular integral equation, regularizer.
@article{VKAM_2023_42_1_a1,
     author = {V. A. Vogahova and F. M. Nakhusheva and Z. H. Guchaeva and A. H. Kodzokov},
     title = {On some boundary value problems with a shift for a mixed type equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {27--36},
     year = {2023},
     volume = {42},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a1/}
}
TY  - JOUR
AU  - V. A. Vogahova
AU  - F. M. Nakhusheva
AU  - Z. H. Guchaeva
AU  - A. H. Kodzokov
TI  - On some boundary value problems with a shift for a mixed type equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 27
EP  - 36
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a1/
LA  - ru
ID  - VKAM_2023_42_1_a1
ER  - 
%0 Journal Article
%A V. A. Vogahova
%A F. M. Nakhusheva
%A Z. H. Guchaeva
%A A. H. Kodzokov
%T On some boundary value problems with a shift for a mixed type equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 27-36
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a1/
%G ru
%F VKAM_2023_42_1_a1
V. A. Vogahova; F. M. Nakhusheva; Z. H. Guchaeva; A. H. Kodzokov. On some boundary value problems with a shift for a mixed type equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 27-36. http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a1/

[1] Nakhushev A. M., “O nekotorykh kraevykh zadachakh dlya giperbolicheskikh uravnenii i uravnenii smeshannogo tipa”, Differentsialnye uravneniya, 5:1 (1969), 44–59 | Zbl

[2] Kumykova S. K., “Ob odnoi zadache s nelokalnymi kraevymi usloviyami na kharakteristikakh dlya uravneniya smeshannogo tipa”, Differentsialnye uravneniya, 10:1 (1974), 78–88 | Zbl

[3] Vodakhova V. A., Shameeva K. A., “Zadachi so smescheniem dlya sistemy uravnenii pervogo poryadka Lykova”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 52:2 (2013), 3-7

[4] Vodakhova V. A., Tlupova R. G., Shermetova M. Kh., “Vnutrennekraevaya zadacha dlya nagruzhennogo uravneniya tretego poryadka s kratnymi kharakteristikami”, Uspekhi sovremennogo estestvoznaniya, 2015, no. 1, 71-75

[5] Nakhusheva F. M., Vodakhova V. A., Kudaeva F. Kh., Abaeva Z. V., “Lokalno-odnomernaya raznostnaya skhema dlya uravneniya diffuzii drobnogo poryadka s sosredotochennoi teploemkostyu”, Sovremennye problemy nauki i obrazovaniya, 2015, no. 2-1, 763

[6] Vodakhova V. A., Nakhusheva F. M., Guchaeva Z. Kh., “Kraevaya zadacha so smescheniem dlya nagruzhennogo giperbolo - parabolicheskogo uravneniya tretego poryadka”, Sovremennye problemy prikladnoi matematiki, informatiki i mekhaniki, Sbornik trudov Mezhdunarodnoi nauchnoi konferentsii, Nalchik, 10–14 iyunya 2019 goda, v. 2, 2019, 49-54

[7] Balkizov Zh. A., Vodakhova V. A., “Vnutrennekraevye zadachi so smescheniem dlya smeshanno-volnovogo uravneniya”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 36:3 (2021), 8-14 | DOI | Zbl

[8] Kumykova S. K., Ezaova A. G., Guchaeva Z. Kh., “Zadacha so smescheniem dlya uravneniya vlagoperenosa A.V. Lykova”, Sovremennye naukoemkie tekhnologii, 2016, no. 9-2, 237-243

[9] Eleev V. A., Zhemukhova Z. Kh., “O nekotorykh kraevykh zadachakh dlya odnogo smeshannogo uravneniya s razryvnymi koeffitsientami v pryamougolnoi oblasti”, Vladikavkazskii matematicheskii zhurnal, 4:4 (2002), 8-18 | Zbl

[10] Eleev V. A., Guchaeva Z. Kh., “Nelokalnaya kraevaya zadacha dlya uravneniya Lavrenteva - Bitsadze v pryamougolnoi oblasti”, Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta, 1:1 (2011), 9-20