Solvability of a nonlocal inverse problem for a fourth-order equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 9-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider a nonlocal inverse problem of finding an unknown right-hand side with one variable for a fourth-order partial differential equation in a rectangular domain. The eigenfunctions and functions of the corresponding spectral problem and its biorthogonal functions are complete and form a Riesz basis in the space $L_2(0,1)$. Criteria for the uniqueness and existence of a solution to the considered nonlocal inverse problem for a fourth-order equation are established. The uniqueness of the solution of the nonlocal inverse problem follows from the completeness of the system of biorthogonal functions. The solution of the problem is constructed as the sum of a series in terms of eigenfunctions and associated functions of the corresponding spectral problem. Sufficient conditions are established for the boundary functions that guarantee existence and stability theorems for the solution of the problem under consideration. In a closed domain, absolute and uniform convergence of the found solution of the inverse problem is shown in the form of a series, as well as series obtained by term-by-term differentiation with respect to $t$ and $x$ two and four times, respectively, depending on the smoothness of the function given the initial conditions. In this case, small denominators arise, which hinder the convergence of these series. It is proved that, depending on the size of the domain, the set of non-zero solutions of the expression in the denominator is not empty. And also, it is shown that if this denominator is equal to zero, then this problem will have a non-trivial solution under homogeneous conditions. It is also proved that the solution of the inverse problem is stable in the norms of the spaces $L_2$, $W_2^n$ and $C(\Omega_\pm)$ with respect to changes in the input data.
Keywords: fourth order equation, uniqueness, stability.
Mots-clés : inverse nonlocal problem, existence
@article{VKAM_2023_42_1_a0,
     author = {A. B. Bekiev},
     title = {Solvability of a nonlocal inverse problem for a fourth-order equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {9--26},
     year = {2023},
     volume = {42},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a0/}
}
TY  - JOUR
AU  - A. B. Bekiev
TI  - Solvability of a nonlocal inverse problem for a fourth-order equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2023
SP  - 9
EP  - 26
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a0/
LA  - ru
ID  - VKAM_2023_42_1_a0
ER  - 
%0 Journal Article
%A A. B. Bekiev
%T Solvability of a nonlocal inverse problem for a fourth-order equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2023
%P 9-26
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a0/
%G ru
%F VKAM_2023_42_1_a0
A. B. Bekiev. Solvability of a nonlocal inverse problem for a fourth-order equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 42 (2023) no. 1, pp. 9-26. http://geodesic.mathdoc.fr/item/VKAM_2023_42_1_a0/

[1] Amanov D., Razreshimost i spektralnye svoistva kraevykh zadach dlya uravnenii chetnogo poryadka, avtoref. dis. d-ra fiz.-mat. nauk, AN RUz, Tashkent, 2019, 44 pp.

[2] Amirov Sh., Kozhanov A. I., “Globalnaya razreshimost nachalno-kraevykh zadach dlya nekotorykh nelineinykh analogov uravneniya Bussineska”, Mat. zametki, 99:2 (2016), 171–180 DOI: 10.4213/mzm10617 | DOI | Zbl

[3] Denisov A. M., “K resheniyu odnoi biologicheskoi zadachi”, Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994, 208 pp.

[4] Dzhuraev T. D., Sopuev A., K teorii differentsialnykh uravnenii v chastnykh proizvodnykh chetvertogo poryadka, Fan, Tashkent, 2000, 144 pp.

[5] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izdatelstvo, Novosibirsk, 2009, 457 pp.

[6] Kaliev I. A., Mugafarov M. F., Fattakhova O. V., “Obratnaya zadacha dlya parabolicheskogo uravneniya s peremennym napravleniem vremeni s obobschennymi usloviyami sopryazheniya”, Ufim. matem. zhurn., 3:2 (2011), 34-42 | Zbl

[7] Kamynin V. L., “Obratnaya zadacha odnovremennogo opredeleniya pravoi chasti i mladshego koeffitsienta v parabolicheskom uravnenii so mnogimi prostranstvennymi peremennymi”, Mat. zametki, 97:3 (2015), 368-381 DOI: 10.4213/mzm10499 | DOI | Zbl

[8] Kamynin V. L., “Obratnaya zadacha odnovremennogo opredeleniya dvukh zavisyaschikh ot prostranstvennoi peremennoi mladshikh koeffitsientov v parabolicheskom uravnenii”, Mat. zametki, 106:2 (2019), 248-261 DOI: 10.4213/mzm12164 | DOI | Zbl

[9] Kozhanov A. I., “Obratnye zadachi vosstanovleniya pravoi chasti spetsialnogo vida v parabolicheskom uravnenii”, Mat. zametki SVFU, 23:4 (2016), 31-45 | Zbl

[10] Kozhanov A. I., “Parabolicheskie uravneniya s neizvestnym koeffitsientami, zavisyaschimi ot vremeni”, Zh. vychisl. matem. i mat. fiz., 57:6 (2017), 961-972 | DOI

[11] Korotkii A. I., Starodubtseva Yu. V., Modelirovanie pryamykh i obratnykh granichnykh zadach dlya statsionarnykh modelei teplomassoperenosa, Izd-vo Ural. un-ta, Ekaterinburg, 2015, 168 pp.

[12] Lavrentev M. M., “Ob odnoi obratnoi zadache dlya volnovogo uravneniya”, Dokl. AN SSSR, 157:3 (1964), 520-521 | Zbl

[13] Megraliev Ya., “Obratnaya kraevaya zadacha dlya uravneniya izgiba tonkikh plastinok s dopolnitelnym integralnym usloviem”, Dalnev. mat. zhur., 13:1 (2013), 83-101 | Zbl

[14] Megraliev Ya. T., Alizade F. Kh., “Obratnaya kraevaya zadacha dlya odnogo uravneniya Bussineska chetvertogo poryadka s nelokalnymi integralnymi po vremeni usloviyami vtorogo roda”, Vest. Udmurt. univer. Matematika. Mekhanika. Kompyuternye nauki., 26:4 (2016), 503-514 DOI: 10.20537/vm160405 | Zbl

[15] Pyatkov S.G., Kvich E.S., “Vosstanovlenie mladshikh koeffitsientov v parabolicheskom uravnenii s menyayuschimsya napravleniem vremeni”, Vestnik YuUrGU. Seriya «Matematika. Mekhanika. Fizika», 10:4 (2018), 23-29 DOI: 10.14529/mmph180403 | Zbl

[16] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984, 264 pp.

[17] Sabitov K. B., Khadzhi I. A., “Kraevaya zadacha dlya uravneniya Lavrenteva-Bitsadze s neizvestnoi pravoi chastyu”, Izv. vuzov. matem., 2011, no. 5, 44-52 | Zbl

[18] Sabitov K. B., Martemyanova N. V., “Nelokalnaya obratnaya zadacha dlya uravneniya smeshannogo tipa”, Izv. vuzov. Matem., 2011, no. 2, 71-85 | Zbl

[19] Sabitov K. B., Martemyanova N. V., “Obratnaya zadacha dlya uravneniya elliptiko-giperbolicheskogo tipa s nelokalnym granichnym usloviyam”, Sib. mat. zhurn., 53:3 (2012), 633-647 | Zbl

[20] Sabitov K. B., Sidorov S. N., “Obratnaya zadacha dlya vyrozhdayuschegosya parabolo-giperbolicheskogo uravneniya s nelokalnym granichnym usloviem”, Izv. vuzov. Matematika, 2015, no. 1, 46-59 | Zbl

[21] Teleshova L. A., Obratnye zadachi dlya parabolicheskikh uravnenii vysokogo poryadka, dis. kand. fiz.-mat. nauk, Ulan-Ude, 2017, 155 pp.

[22] Yuldashev T.K., “Ob odnom smeshannom differentsialnom uravnenii chetvertogo poryadka”, Izv. Instit. mat. i inf. UdGU, 1(47) (2016), 119-128 | Zbl

[23] Yuldashev T. K., “Smeshannoe differentsialnoe uravnenie tipa Bussineska”, Vest. Volgogr. gos. un-ta. Ser.1, Mat. Fiz., 2016, no. 2(33), 13-23 DOI: 10.15688/jvolsu1.2016.2.2

[24] Berdyshev A. S., Cabada A., Kadirkulov B. J., “The Samarskii-Ionkin type problem for the fourth order parabolic equation with fractional differential operator”, Computers and Mathematics with Applications, 62 (2011), 3884-3893 | DOI | Zbl

[25] Jiang D., Liu Y., Yamamoto M., “Inverse source problem for the hyperbolic equation witha time-dependent principal part”, J. Diff. Equat., 262:1 (2017), 653-681 DOI: 10.1016/j.jde.2016.09.036 | DOI | Zbl

[26] Prilepko A. I., Orlovsky D. G. Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Global Express Ltd., New York-Basel, 1999, 709 pp.