Investigation of the Selkov fractional dynamical system
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 146-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A fractional nonlinear Selkov dynamic system is proposed to describe microseismic phenomena. This system is known for the presence of self-oscillatory regimes and is used in biology to describe glycolytic oscillations of the substrate and product.The Selkov dynamic system can also, by analogy, describe the interaction of two types of cracks in an elastic-brittle medium. The first type is seed cracks with less energy, which are not recorded by seismic equipment, and the second type is large cracks that generate microseisms. The first type of cracks are triggers for cracks of the second type. However, the reverse transition is also possible. For example, when large cracks lose their energy and partially become seed cracks. Further, after increasing their concentration, the process is repeated, providing the self-oscillating nature of microseismic sources. The Selkov fractional dynamical system takes into account the effect of hereditarity and is described using derivative fractional orders. The heredity of oscillatory systems is studied within the framework of hereditary mechanics and indicates that a dynamic system can «remember» some time, the impact on it, which is typical for viscoelastic and plastic media. The orders of fractional derivatives are related to the hereditarity of the system and are responsible for the intensity of energy dissipation emitted by cracks of the first and second types. In this paper, the Selkov fractional dynamic model is investigated using the Adams-Bashforth-Moulton numerical method, oscillograms and phase trajectories are constructed, and rest points are investigated. It is shown that a fractional dynamic model can have relaxation and damped oscillations, as well as chaotic modes.
Keywords: Selkov dynamic system, self-oscillating mode, oscillograms, phase trajectories, bifurcation diagrams, Adams-Bashforth-Multon method.
@article{VKAM_2022_41_4_a8,
     author = {R. I. Parovik},
     title = {Investigation of the {Selkov} fractional dynamical system},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {146--166},
     year = {2022},
     volume = {41},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a8/}
}
TY  - JOUR
AU  - R. I. Parovik
TI  - Investigation of the Selkov fractional dynamical system
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 146
EP  - 166
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a8/
LA  - ru
ID  - VKAM_2022_41_4_a8
ER  - 
%0 Journal Article
%A R. I. Parovik
%T Investigation of the Selkov fractional dynamical system
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 146-166
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a8/
%G ru
%F VKAM_2022_41_4_a8
R. I. Parovik. Investigation of the Selkov fractional dynamical system. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 146-166. http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a8/

[1] Kearey Ph., The Encyclopedia of Solid Earth Sciences, Blackwell Sci., 1993, 722 pp.

[2] Makovetskii V. I., Dudchenko I. P., Zakupin A. S., “Avtokolebatelnaya model istochnikov mikroseism”, Geosistemy perekhodnykh zon, 2017, no. 4(1), 37-46

[3] Shpielberg O., Akkermans E. Le, “Chatelier principle for out-of-equilibrium and boundary-driven systems: Application to dynamical phase transitions”, Physical review letters, 116:24 (2016), 240603 | DOI

[4] Selkov E. E., “Self-oscillations in glycolysis. I. A simple kinetic model”, Eur. J. Biochem., 4 (1968), 79–86 | DOI

[5] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdogo tela, Mir, M., 1980, 392 pp.

[6] Volterra V., “Sur les' equations int'egro-differentielles et leurs applications”, Acta Mathematica, 35:1 (1912), 295–356 | DOI

[7] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp.

[8] Oldham K. B., Spanier J., The fractional calculus. Theory and applications of differentiation and integration to arbitrary order, Academic Press, London, 1974, 240 pp.

[9] Miller K. S., Ross B., An introduction to the fractional calculus and fractional differntial equations, A Wiley-Interscience publication, New York, 1993, 384 pp.

[10] Petras I., Fractional Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing-Springer-Verlag Berlin Heidelberg, 2011.

[11] Brechmann P., Rendall A. D., “Dynamics of the Selkov oscillator”, Mathematical Biosciences, 306 (2018), 152-159 . DOI: 10.1016/j.mbs.2018.09.012 | DOI

[12] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: A review”, Proc. R. Soc. A R. Soc. Publ., 476 (2020), 20190498 . DOI: 10.1098/rspa.2019.0498 | DOI

[13] Garrappa R., “Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial”, Mathematics, 6:16 . (2018) DOI:10.3390/math6020016

[14] Yang C., Liu F., “A computationally effective predictor-corrector method for simulating fractional-order dynamical control system”, ANZIAM J., 47 (2006), 168–184 DOI: 10.21914/anziamj.v47i0.1037 | DOI

[15] Diethelm K, Ford N.J., Freed A.D., “A predictor-corrector approach for the numerical solution of fractional differential equations”, Nonlinear Dyn., 29 (2002), 3-22 DOI: 10.1023/A:1016592219341 | DOI

[16] Parovik R., Rakhmonov Z., Zunnunov R., “Modeling of fracture concentration by Sel’kov fractional dynamic system”, E3S Web of Conferences, 196 (2020), 02018 | DOI

[17] Parovik R. I., “Research of the stability of some hereditary dynamic systems”, Journal of Physics: Conference Series, 1141:1 (2018), 012079 | DOI

[18] Parovik R. I., “Chaotic modes of a non-linear fractional oscillator”, IOP Conference Series: Materials Science and Engineering, 919:5 (2020), 052040 | DOI

[19] Parovik R. I., “Quality factor of forced oscillations of a linear fractional oscillator”, Technical Physics, 65:7 (2020), 1015-1019 | DOI

[20] Benettin G., Galgani L., Giorgilli A., Strelcyn J. M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory”, Meccanica, 15:1 (1980), 9-20 | DOI

[21] Wolf A., Swift, J. B., Swinney, H. L., Vastano, J. A., “Determining Lyapunov exponents from a time series”, Physica D: nonlinear phenomena, 16:3 (1985), 285-317 | DOI

[22] Ma S., Xu Y., Yue W., “Numerical solutions of a variable-order fractional financial system”, Journal of Applied Mathematics. 2012 (2012), 417942 . DOI: 10.1155/2012/417942

[23] Geist K., Parlitz U., Lauterborn W., “Comparision of different methods for computing Lyapunov exponents”, Prog. Theor. Phys., 83:5 (1990) | DOI

[24] Parovik R. I., “Studies of the Fractional Selkov Dynamical System for Describing the Self-Oscillatory Regime of Microseisms”, Mathematics, 10(22) (2022), 4208 . DOI: 10.3390/math10224208 | DOI