@article{VKAM_2022_41_4_a7,
author = {O. V. Mandrikova and Yu. A. Polozov},
title = {Modeling and analysis of fof2 data using narx neural networks and wavelets},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {137--146},
year = {2022},
volume = {41},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a7/}
}
TY - JOUR AU - O. V. Mandrikova AU - Yu. A. Polozov TI - Modeling and analysis of fof2 data using narx neural networks and wavelets JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 137 EP - 146 VL - 41 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a7/ LA - ru ID - VKAM_2022_41_4_a7 ER -
O. V. Mandrikova; Yu. A. Polozov. Modeling and analysis of fof2 data using narx neural networks and wavelets. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 137-146. http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a7/
[1] Alperovich L., Eppelbaum L., Zheludev V., Dumoulin J., Soldovieri F., Proto M., Bavusi M., Loperte A., “A New Combined Wavelet Methodology: Implementation to GPR and ERT Data Obtained in the Montagnole Experiment”, J. Geophys. Eng., 10 (2013), 025017 DOI: 10.1088/1742-2132/10/2/025017 | DOI
[2] Tang R., Zeng F., Chen Z., Wang J.-S., Huang C.-M., Wu Z., “The Comparison of Predicting Storm-Time Ionospheric TEC by Three Methods: ARIMA, LSTM, and Seq2Seq”, Atmosphere, 11 (2020), 316 DOI: 10.3390/atmos11040316 | DOI
[3] Kim S.-K., Lee E., Park J., Shin S., “TFeasibility Analysis of GNSS-Reflectometry for Monitoring Coastal Hazards”, Remote Sensing, 13 (2021), 976 DOI: 10.3390/rs13050976 | DOI
[4] Perol T., Gharbi M., Denolle M., “Convolutional Neural Network for Earthquake Detection and Location”, Sci. Adv., 4 (2018), e1700578 DOI: 10.1126/sciadv.1700578 | DOI
[5] Pavlicko M., Vojteková M., Blažeková O., “Forecasting of Electrical Energy Consumption in Slovakia”, Mathematics, 10 (2022), 577 DOI: 10.3390/math10040577 | DOI
[6] Ma Q., Liu S., Fan X., Chai C., Wang Y., Yang K., “A Time Series Prediction Model of Foundation Pit Deformation Based on Empirical Wavelet Transform and NARX Network”, Mathematics, 8 (2020), 1535 DOI: 10.3390/math8091535 | DOI
[7] Haykin S., Neural Networks: A Comprehensive Foundation, 2nd ed., Prentice Hall, N.J., 1999, 842 pp.
[8] Diaconescu E., “The use of NARX neural networks to predict chaotic time series”, WSEAS Trans. Comp. Res., 3 (2008), 182–191
[9] Gao Y., Er M.J., “NARMAX Time Series Model Prediction: Feedforward and Recurrent Fuzzy Neural Network Approaches”, Fuzzy Sets and Systems, 150 (2005), 331–350 DOI: 10.1016/j.fss.2004.09.015 | DOI
[10] Mallat S., A Wavelet Tour of Signal Processing, Academic Press, San Diego, 1999, 620 pp.
[11] Danilov A.D., “Ionospheric F-Region Response to Geomagnetic Disturbances”, Advances in Space Research, 52 (2013), 343–366 DOI: 10.1016/j.asr.2013.04.019 | DOI
[12] Mandrikova O., Mandrikova, B., “Method of wavelet-decomposition to research cosmic ray variations: Application in space weather”, Symmetry, 13:12 (2021), 2313 DOI: 10.3390/sym13122313 | DOI
[13] Mandrikova O., Mandrikova, B., “Hybrid method for detecting anomalies in cosmic ray variations using neural networks autoencoder”, Symmetry, 14:4 (2022), 744 DOI: 10.3390/sym14040744 | DOI
[14] Mandrikova O., Fetisova N., Polozov Y., “Hybrid model for time series of complex structure with ARIMA components”, Mathematics, 9:10 (2021), 1122 DOI: 10.3390/math9101122 | DOI