Modern methods of processing and analysis of geophysical pulse signals
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 120-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The studies of various physical fields are conducted at Institute of cosmophysical research and radio wave propagation. The signals recorded during such studies often have pulse nature, i. e., they are sequences of pulses. The paper observes modern methods of digital signal processing which can be used for the analysis of geophysical pulse signals. To search for signal fragments which contain anomalies, the digital filtering within seven frequency bands and further averaging over 1-second intervals are proposed. To isolate single pulses under conditions of permanent background noise, the adaptive threshold scheme is used. To remove noise and to separate the informal part of the signals, wavelet thresholding is applied. To analyse the time- frequency content of pulses, the authors offer sparse approximation method. To study peculiarities of pulse shape, the transformation of a pulse into the binary matrix which uniquely determines the pulse form.
Keywords: pulse signals, signal processing, signal analysis.
@article{VKAM_2022_41_4_a6,
     author = {O. O. Lukovenkova and M. A. Mishenko and Yu.I. Senkevich and A. O. Shcherbina},
     title = {Modern methods of processing and analysis of geophysical pulse signals},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {120--136},
     year = {2022},
     volume = {41},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a6/}
}
TY  - JOUR
AU  - O. O. Lukovenkova
AU  - M. A. Mishenko
AU  - Yu.I. Senkevich
AU  - A. O. Shcherbina
TI  - Modern methods of processing and analysis of geophysical pulse signals
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 120
EP  - 136
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a6/
LA  - ru
ID  - VKAM_2022_41_4_a6
ER  - 
%0 Journal Article
%A O. O. Lukovenkova
%A M. A. Mishenko
%A Yu.I. Senkevich
%A A. O. Shcherbina
%T Modern methods of processing and analysis of geophysical pulse signals
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 120-136
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a6/
%G ru
%F VKAM_2022_41_4_a6
O. O. Lukovenkova; M. A. Mishenko; Yu.I. Senkevich; A. O. Shcherbina. Modern methods of processing and analysis of geophysical pulse signals. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 120-136. http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a6/

[1] Marapulets Yu. V., Senkevich Yu. I. , Lukovenkova O. O., Solodchuk A. A., Larionov I. A., Mischenko M. A., Malkin E. I., Scherbina A. O., Gapeev M. I., Kompleksnyi analiz akusticheskikh i elektromagnitnykh signalov dlya otsenki urovnya seismicheskoi opasnosti, Dalnauka, Vladivostok, 2020, 120 pp.

[2] Druzhin G. I., Bashkuev Yu. B., Naguslaeva I. B., Cherneva N. V., Shevtsov B. M., “Lightning according to electromagnetic field observations in Buryatiya”, Proceedings, 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics (Tomsk, Russian Federation, November 29, 2016), v. 10035, 2016 DOI: 10.1117/12.2247926

[3] Marapulets Yu. V., Shevtsov B. M., Mezomasshtabnaya akusticheskaya emissiya, Dalnauka, Vladivostok, 2012, 126 pp.

[4] Fu K. S., Mui J. K., “A survey on image segmentation”, Pattern Recognition, 13:1 (1981), 3–16 DOI: 10.1016/0031-3203(81)90028-5 | DOI

[5] Frucci M., Sanniti G., Sanniti di Baja G., “From Segmentation to Binarization of Gray-Level Images”, Journal of Pattern Recognition Research, 3:1 (2008), 1–13 DOI: 10.13176/11.54 | DOI

[6] Evtikhiev N. N., Kozlov A. V., Krasnov V. V., Rodin V. G., Starikov R. S., Cheremkhin P. A., “A method for measuring digital camera noise by automatic segmentation of a striped target”, Computer Optics, 42:2 (2021), 267–276 DOI: 10.18287/2412-6179-CO-815

[7] Budunova K. A., Kravchenko V. F., Pustovoit V. I., “Digital Frequency-Selective Filters Based on Spectra of Atomic Functions”, Journal of Communications Technology and Electronics, 64 (2019), 1095–1100 DOI: 10.1134/S1064226919100036 | DOI

[8] Lukovenkova O., Marapulets Yu., Kim A., Tristanov A., “A Complex Method for Automatic Detection of Geoacoustic Emission Pulses Preceding Earthquakes”, Proceedings, 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) (Vladivostok, Russia, October 03–04, 2018), 2018 DOI: 10.1109/FarEastCon.2018.8602865

[9] Srikar G., Prasad Ch. R., “An Enhanced Audio Noise Removal Based on Wavelet Transform and Filters”, Advances in Computational Sciences and Technology, 10 (2017), 3111–3121

[10] Srivastava M., Anderson C. L., Freed J. H., “A New Wavelet Denoising Method for Selecting Decomposition Levels and Noise Thresholds”, IEEE Access, 4 (2016), 3862–3877 DOI: 10.1109/ACCESS.2016.2587581 | DOI

[11] Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology, eds. D. Baleanu, IntechOpen, 2012, 648 pp.

[12] Donoho D. L., “De-noising by soft-thresholding”, IEEE Transactions on Information Theory, 41 (1995), 613-–627 DOI: 10.1109/18.382009 | DOI

[13] Cai T., “On block thresholding in wavelet regression: Adaptivity, block size, and threshold level”, Statistica Sinica, 12 (2002), 1241–-1273

[14] Abramovich F., Benjamini Y., Donoho D. L., Johnstone I. M., “Adapting to Unknown Sparsity by Controlling the False Discovery Rate”, The Annals of Statistics, 34 (2006), 584–-653 DOI: 10.1214/009053606000000074

[15] Johnstone I. M., Silverman B. W., “Needles and Straw in Haystacks: Empirical Bayes Estimates of Possibly Sparse Sequences”, The Annals of Statistics, 32 (2004), 1594-–1649 DOI: 10.1214/009053604000000030

[16] Lukovenkova O., “Application of adaptive wavelet thresholding to recovery geoacoustic signal pulse waveforms”, EPJ Web of Conferences, volume 254, XII International Conference “Solar-Terrestrial Relations and Physics of Earthquake Precursors” (Paratunka, Kamchatka region, Russia, September 27–October 1, 2021), 2021 DOI: 10.1051/epjconf/202125402004

[17] Mallat S. G., Zhang Zh., “Matching pursuits with time-frequency dictionaries”, IEEE Transactions on Signal Processing, 41:12 (1993), 3397-–3415 DOI: 10.1109/78.258082 | DOI