@article{VKAM_2022_41_4_a2,
author = {D. A. Tvyordyj and R. I. Parovik},
title = {Mathematical modeling in matlab of solar activity cycles according to the growth-decline of the {Wolf} number},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {47--64},
year = {2022},
volume = {41},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a2/}
}
TY - JOUR AU - D. A. Tvyordyj AU - R. I. Parovik TI - Mathematical modeling in matlab of solar activity cycles according to the growth-decline of the Wolf number JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 47 EP - 64 VL - 41 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a2/ LA - ru ID - VKAM_2022_41_4_a2 ER -
%0 Journal Article %A D. A. Tvyordyj %A R. I. Parovik %T Mathematical modeling in matlab of solar activity cycles according to the growth-decline of the Wolf number %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 47-64 %V 41 %N 4 %U http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a2/ %G ru %F VKAM_2022_41_4_a2
D. A. Tvyordyj; R. I. Parovik. Mathematical modeling in matlab of solar activity cycles according to the growth-decline of the Wolf number. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 47-64. http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a2/
[1] Murtazov A. K., Fizika zemli. Kosmicheskie vozdeistviya na geosistemy 2-e izd. per. i dop., Yurait, Moskva, 2021, 268 pp.
[2] Volterra V., Functional theory, integral and integro-differential equations, Nauka, Moscow, 1982
[3] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 510 pp.
[4] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.
[5] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam, 2006, 523 pp.
[6] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory, Springer, Berlin, 2013, 373 pp.
[7] Ortigueira M. D., Valerio D., Machado J. T., “Variable order fractional systems”, Communications in Nonlinear Science and Numerical Simulation, 71 (2019), 231–243 DOI: 10.1016/j.cnsns.2018.12.003
[8] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: a review”, Proceedings of the Royal Society A, 476:2234 (2020), 20190498 DOI: 10.1098/rspa.2019.0498
[9] Coimbra C. F. M., “Mechanics with variable-order differential operators”, Annalen der Physik, 12:11-12 (2003), 692–703 DOI: 10.1002/andp.200310032
[10] Parovik R. I., “On a finite-difference scheme for an hereditary oscillatory equation”, Journal of Mathematical Sciences, 253:4 (2021), 547–557 DOI: 10.1007/s10958-021-05252-2
[11] Parovik R. I., “Mathematical modeling of linear fractional oscillators”, Mathematics, 8:11 (2020), 18–79 DOI: 10.3390/math8111879
[12] Parovik R. I. Tverdyi D. A., “Some Aspects of Numerical Analysis for a Model Nonlinear Fractional Variable Order Equation”, Mathematical and Computational Applications, 26:3 (2021), 55 DOI: 10.3390/mca26030055
[13] Sun H., et al., “Finite difference schemes for variable-order time fractional diffusion equation”, International Journal of Bifurcation and Chaos, 22:04 (2012), 1250085 DOI: 10.1142/S021812741250085X
[14] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6(1):23 (2022), 1–27 DOI: 10.3390/fractalfract6010023
[15] Buraev A. V., “Nekotorye aspekty matematicheskogo modelirovaniya regionalnykh proyavlenii solnechnoi aktivnosti i ikh svyazi s ekstremalnymi geofizicheskimi protsessami”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi Akademii Nauk, 12:1 (2010), 88–90
[16] Postan M. Ya., “Obobschennaya logisticheskaya krivaya: ee svoistva i otsenka parametrov”, Ekonomika i matematicheskie metody, 29:2 (1993), 305–310
[17] Therese A. S., “Generalized Logistic Models”, Journal of the American Statistical Association, 83:402 (1988), 426–431 DOI: 10.1080/01621459.1988.10478613
[18] Rzkadkowski G., Sobczak L., “A generalized logistic function and its applications”, Foundations of Management, 12:1 (2020), 85–92 DOI: 10.2478/fman-2020-0007
[19] Mandelbrot B. B., The fractal geometry of nature, WH freeman, New York, 1982, 468 pp.
[20] Drozdyuk A. V., Logistic curve, Choven, Toronto, 2019, 270 pp.
[21] Tverdyi D. A. Parovik R.,I., “Matematicheskoe modelirovanie nekotorykh logisticheskikh zakonov s pomoschyu ereditarnoi dinamicheskoi sistemy Rikkati”, Materialy 11 Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem (27–30 maya 2019 g.)., Matematicheskoe modelirovanie i kraevye zadachi, SamGTU, Samara, 2019, 348–352
[22] Taogetusang, Sirendaoerji, Li S., “New application to Riccati equation”, Chinese Physics B, 19 (2010), 080303 DOI: 10.1088/1674-1056/19/8/080303
[23] Kurkin A. A., Kurkina O. E., Pelenovskii E. N., “Logisticheskie modeli rasprostraneniya epidemii”, Trudy NGTU im. R.E. Alekseeva., 129 (2020), 9–18
[24] Torres-Hernandez A., et al., “Fractional Newton–Raphson Method Accelerated with Aitken’s Method”, Axioms, 10:2 (2021), 1–47 DOI: 10.3390/axioms10020047
[25] Zhukov S. A., “O pezokeramike i perspektivakh ee primeneniya”, Mir tekhniki i tekhnologii: mezhdunarodnyi promyshlennyi zhurnal, 2021, no. 5, 56–60
[26] Bayldon J. M., Daniel I. M., “Flow modeling of the VARTM process including progressive saturation effects”, Composites Part A: Applied Science and Manufacturing, 40:8 (2009), 1044–1052 DOI: 10.1016/j.compositesa.2009.04.008
[27] Landis C. M., “On the strain saturation conditions for polycrystalline ferroelastic materials”, Jornal of Applied Mechanics., 70:4 (2009), 470–478 DOI: 10.1115/1.1600472
[28] Sunspot Index and Long-term Solar Observations, Dannye ot Korolevskoi observatorii Belgii (ROB) Av. Circulaire, 3 - B-1180 Brussels (data dostupa: 18.11.2022 ) https://www.sidc.be/silso/datafiles
[29] Cox D. R. Hinkley D. V., Theoretical Statistics, 1st edition, Chapman Hall/CRC, London, 1979, 528 pp.
[30] Hughes A. J., Grawoig D. E., Statistics: A Foundation for Analysis, Addison Wesley, Boston, 1971, 525 pp.
[31] Chicco D., Warrens M. J., Jurman G., “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation”, PeerJ Computer Scienc, 299 (2021), e623 DOI: 10.7717/peerj-cs.623
[32] Tverdyi D. A., Parovik R. I., “Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect”, Fractal and Fractional, 6(3):163 (2022), 1–35 DOI: 10.3390/fractalfract6030163