Mathematical modeling in matlab of solar activity cycles according to the growth-decline of the Wolf number
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 47-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, mathematical modeling of the dynamics of solar activity is carried out. Observational data on the average monthly number of sunspots, called the Wolf number, for the period of 24.5 years from May 1996 to October 2022 are studied. Based on the results of a similar study of data on this process, using the Riccati equation of a fractional constant order, that the rise and fall of the Wolf number over time occurs along a curve very close to the generalized logistic curve, this article also proposes a mathematical model based on the Riccati equation. Since the Riccati equation describes well the processes that obey the logistic law. However, the equation is generalized to the integro-differential Riccati equation by introducing a fractional derivative of the Gerasimov-Caputo type of variable order, and a fractional derivative with a variable order, allows you to get a more precise mathematical model of Wolf number cycles with saturation, and allows you to take into account the effect of variable memory. All model calculations, data processing and visualization are carried out in the FDRE 3.0 program developed in the MATLAB package. Modeling parameters are refined by approximation of known data under study, using regression analysis. As a result, the model curves and graphs of the observed data known for 24.5 years show good agreement with each other. With the help of a refined mathematical model, a forecast is made for the next 9 years, which visually agrees well with the known model results of solar activity.
@article{VKAM_2022_41_4_a2,
     author = {D. A. Tvyordyj and R. I. Parovik},
     title = {Mathematical modeling in matlab of solar activity cycles according to the growth-decline of the {Wolf} number},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {47--64},
     year = {2022},
     volume = {41},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a2/}
}
TY  - JOUR
AU  - D. A. Tvyordyj
AU  - R. I. Parovik
TI  - Mathematical modeling in matlab of solar activity cycles according to the growth-decline of the Wolf number
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 47
EP  - 64
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a2/
LA  - ru
ID  - VKAM_2022_41_4_a2
ER  - 
%0 Journal Article
%A D. A. Tvyordyj
%A R. I. Parovik
%T Mathematical modeling in matlab of solar activity cycles according to the growth-decline of the Wolf number
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 47-64
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a2/
%G ru
%F VKAM_2022_41_4_a2
D. A. Tvyordyj; R. I. Parovik. Mathematical modeling in matlab of solar activity cycles according to the growth-decline of the Wolf number. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 47-64. http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a2/

[1] Murtazov A. K., Fizika zemli. Kosmicheskie vozdeistviya na geosistemy 2-e izd. per. i dop., Yurait, Moskva, 2021, 268 pp.

[2] Volterra V., Functional theory, integral and integro-differential equations, Nauka, Moscow, 1982

[3] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 510 pp.

[4] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[5] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam, 2006, 523 pp.

[6] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory, Springer, Berlin, 2013, 373 pp.

[7] Ortigueira M. D., Valerio D., Machado J. T., “Variable order fractional systems”, Communications in Nonlinear Science and Numerical Simulation, 71 (2019), 231–243 DOI: 10.1016/j.cnsns.2018.12.003

[8] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: a review”, Proceedings of the Royal Society A, 476:2234 (2020), 20190498 DOI: 10.1098/rspa.2019.0498

[9] Coimbra C. F. M., “Mechanics with variable-order differential operators”, Annalen der Physik, 12:11-12 (2003), 692–703 DOI: 10.1002/andp.200310032

[10] Parovik R. I., “On a finite-difference scheme for an hereditary oscillatory equation”, Journal of Mathematical Sciences, 253:4 (2021), 547–557 DOI: 10.1007/s10958-021-05252-2

[11] Parovik R. I., “Mathematical modeling of linear fractional oscillators”, Mathematics, 8:11 (2020), 18–79 DOI: 10.3390/math8111879

[12] Parovik R. I. Tverdyi D. A., “Some Aspects of Numerical Analysis for a Model Nonlinear Fractional Variable Order Equation”, Mathematical and Computational Applications, 26:3 (2021), 55 DOI: 10.3390/mca26030055

[13] Sun H., et al., “Finite difference schemes for variable-order time fractional diffusion equation”, International Journal of Bifurcation and Chaos, 22:04 (2012), 1250085 DOI: 10.1142/S021812741250085X

[14] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6(1):23 (2022), 1–27 DOI: 10.3390/fractalfract6010023

[15] Buraev A. V., “Nekotorye aspekty matematicheskogo modelirovaniya regionalnykh proyavlenii solnechnoi aktivnosti i ikh svyazi s ekstremalnymi geofizicheskimi protsessami”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi Akademii Nauk, 12:1 (2010), 88–90

[16] Postan M. Ya., “Obobschennaya logisticheskaya krivaya: ee svoistva i otsenka parametrov”, Ekonomika i matematicheskie metody, 29:2 (1993), 305–310

[17] Therese A. S., “Generalized Logistic Models”, Journal of the American Statistical Association, 83:402 (1988), 426–431 DOI: 10.1080/01621459.1988.10478613

[18] Rzkadkowski G., Sobczak L., “A generalized logistic function and its applications”, Foundations of Management, 12:1 (2020), 85–92 DOI: 10.2478/fman-2020-0007

[19] Mandelbrot B. B., The fractal geometry of nature, WH freeman, New York, 1982, 468 pp.

[20] Drozdyuk A. V., Logistic curve, Choven, Toronto, 2019, 270 pp.

[21] Tverdyi D. A. Parovik R.,I., “Matematicheskoe modelirovanie nekotorykh logisticheskikh zakonov s pomoschyu ereditarnoi dinamicheskoi sistemy Rikkati”, Materialy 11 Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem (27–30 maya 2019 g.)., Matematicheskoe modelirovanie i kraevye zadachi, SamGTU, Samara, 2019, 348–352

[22] Taogetusang, Sirendaoerji, Li S., “New application to Riccati equation”, Chinese Physics B, 19 (2010), 080303 DOI: 10.1088/1674-1056/19/8/080303

[23] Kurkin A. A., Kurkina O. E., Pelenovskii E. N., “Logisticheskie modeli rasprostraneniya epidemii”, Trudy NGTU im. R.E. Alekseeva., 129 (2020), 9–18

[24] Torres-Hernandez A., et al., “Fractional Newton–Raphson Method Accelerated with Aitken’s Method”, Axioms, 10:2 (2021), 1–47 DOI: 10.3390/axioms10020047

[25] Zhukov S. A., “O pezokeramike i perspektivakh ee primeneniya”, Mir tekhniki i tekhnologii: mezhdunarodnyi promyshlennyi zhurnal, 2021, no. 5, 56–60

[26] Bayldon J. M., Daniel I. M., “Flow modeling of the VARTM process including progressive saturation effects”, Composites Part A: Applied Science and Manufacturing, 40:8 (2009), 1044–1052 DOI: 10.1016/j.compositesa.2009.04.008

[27] Landis C. M., “On the strain saturation conditions for polycrystalline ferroelastic materials”, Jornal of Applied Mechanics., 70:4 (2009), 470–478 DOI: 10.1115/1.1600472

[28] Sunspot Index and Long-term Solar Observations, Dannye ot Korolevskoi observatorii Belgii (ROB) Av. Circulaire, 3 - B-1180 Brussels (data dostupa: 18.11.2022 ) https://www.sidc.be/silso/datafiles

[29] Cox D. R. Hinkley D. V., Theoretical Statistics, 1st edition, Chapman Hall/CRC, London, 1979, 528 pp.

[30] Hughes A. J., Grawoig D. E., Statistics: A Foundation for Analysis, Addison Wesley, Boston, 1971, 525 pp.

[31] Chicco D., Warrens M. J., Jurman G., “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation”, PeerJ Computer Scienc, 299 (2021), e623 DOI: 10.7717/peerj-cs.623

[32] Tverdyi D. A., Parovik R. I., “Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect”, Fractal and Fractional, 6(3):163 (2022), 1–35 DOI: 10.3390/fractalfract6030163