Optical characteristics of the thermosphere and mesosphere
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 191-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using lidar signals at wavelengths of 561 and 532 nm in the altitude range of 30-400 km, by solving the inverse problem, we restore the light scattering coefficients corresponding to these wavelengths, which makes it possible to compare the optical characteristics of the thermosphere, mesosphere and upper stratosphere and determine the relationship between the resonant, Rayleigh and aerosol scattering of light at different altitudes of the atmosphere. Using the scattering coefficients in the thermosphere, we find the cross sections of light scattering at wavelengths of 561 and 532 nm for the transitions of excited atomic oxygen and nitrogen ions and explain why the scattering coefficients for O+, 561 nm are smaller than for N+, 532 nm, while the concentration of O+ is two orders of magnitude higher than N+. The results obtained here are of interest for understanding the ionization effect of solar activity on the optical characteristics of the atmosphere, which determine weather and climate changes.
Keywords: optics of the atmosphere, resonant lidar, lidar reflections in the thermosphere, coefficient and cross-section of light scattering, ionization, aerosol, solar activity, ion aeronomy.
Mots-clés : laser ionozond
@article{VKAM_2022_41_4_a11,
     author = {B. M. Shevtsov and A. S. Perezhogin and I. N. Seredkin},
     title = {Optical characteristics of the thermosphere and mesosphere},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {191--208},
     year = {2022},
     volume = {41},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a11/}
}
TY  - JOUR
AU  - B. M. Shevtsov
AU  - A. S. Perezhogin
AU  - I. N. Seredkin
TI  - Optical characteristics of the thermosphere and mesosphere
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 191
EP  - 208
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a11/
LA  - ru
ID  - VKAM_2022_41_4_a11
ER  - 
%0 Journal Article
%A B. M. Shevtsov
%A A. S. Perezhogin
%A I. N. Seredkin
%T Optical characteristics of the thermosphere and mesosphere
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 191-208
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a11/
%G ru
%F VKAM_2022_41_4_a11
B. M. Shevtsov; A. S. Perezhogin; I. N. Seredkin. Optical characteristics of the thermosphere and mesosphere. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 191-208. http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a11/

[1] Collins R. L., Lummerzheim D., Smith R. W., “Analysis of lidar systems for profiling aurorally-excited molecular species”, Appl. Optics, 1997, no. 36, 6024-6034 | DOI

[2] Gerrard A. J., et. al, “Investigation of a resonance lidar for measurement of thermospheric metastable helium”, JASTP, 59:16 (1997), 2023-2035

[3] Waldrop L. S., et. al, “Generation of metastable helium and the 1083 nm emission in the upper thermosphere”, J. Geophs. Res., 110:A08304 (2005) DOI:10.1029/2004JA010855

[4] Collins R. L., Su L., Lummerzheim D., Doe R. A., “Investigating the Auroral Thermosphere with ${N_{2}}^{+}$ Lidar”, In Characterising the Ionosphere. Meeting Proceedings RTO-MP-IST-056, Paper 2, RTO, Neuilly-sur-Seine, France, 2006, 2-1–2-14 http://www.rto.nato.int/abstracts.asp

[5] Shevtsov B. M., et. al, “Stratospheric aerosol dynamics over Kamchatka and its association with geophysical processes”, Geomagnetism and Aeronomy, 49:8 (2009), 1302-1304 DOI: 10.1134/S0016793209080568 | DOI

[6] Bychkov V. V., et. al, “Lidar returns from the upper atmosphere of Kamchatka for 2008 to 2014 observations”, Earth Planet Sp., 66:150 (2014) DOI: 10.1186/s40623-014-0150-6

[7] Bychkov V. V., et. al, “Appearance of light-scattering layers in the thermosphere of Kamchatka during the autumn of 2017”, Proc. SPIE 10833, 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, Russian Federation, 2018, no. 10833A4 DOI: 10.1117/12.2504539

[8] Kaifler B., Geach C., Budenbender H. C. et al., “Measurements of metastable helium in Earth's atmosphere by resonance lidar”, Nat Commun, 13:6042 (2022)

[9] Kramida A., Ralchenko Yu., Reader J. and NIST ASD TEAM., NIST Atomic Spectra Database (ver. 5.5.2), 2021 https://physics.nist.gov/asd

[10] Bychkov V. V., Perezhogin A. S., Seredkin I. N., “Resonant scattering by excited ions as an indicator of the precipitation of charged particles into the atmosphere”, E3S Web of Conferences: Solar-Terrestrial Relations and Physics of Earthquake Precursors, 62:01011 (2018) DOI: 10.1051/e3sconf/20186201011

[11] Bychkov V. V., Seredkin I. N., “Resonance scattering in the thermosphere as an indicator of superthermal electron precipitation”, Atmospheric and Oceanic Optics, 34:1 (2021), 26-33 DOI: 10.1134/S1024856021010048 | DOI

[12] Shevtsov B. M., et. al, “Lidar for atmospheric transparency monitoring”, EPJ Web of Conferences, 254:01003 (2021) DOI: 10.1051/epjconf/202125401003

[13] Shevtsov B. M., et. al, “Atmospheric Optical Characteristics in the Area of 30–400 km”, Remote Sens., 14:6108 (2022) DOI: 10.3390/rs14236108

[14] NRLMSISE-00 Atmosphere Model, 2022 https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php

[15] Richards P. G., “Reexamination of ionospheric photochemistry”, JGR, 116:A8 (2011) DOI: 10.1029/2011JA016613

[16] Andreoli F., et. al, “Maximum Refractive Index of an Atomic Medium”, Phys. Rev. X, 11:011026 (2021) DOI: 10.1103/PhysRevX.11.011026