Keywords: shell models, computer algebra, automation of model development.
@article{VKAM_2022_41_4_a0,
author = {G. M. Vodinchar and L. K. Feshenko and N. V. Podlesnyi},
title = {Construction of complex shell models of turbulent systems by computer algebra methods},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {9--31},
year = {2022},
volume = {41},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a0/}
}
TY - JOUR AU - G. M. Vodinchar AU - L. K. Feshenko AU - N. V. Podlesnyi TI - Construction of complex shell models of turbulent systems by computer algebra methods JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 9 EP - 31 VL - 41 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a0/ LA - ru ID - VKAM_2022_41_4_a0 ER -
%0 Journal Article %A G. M. Vodinchar %A L. K. Feshenko %A N. V. Podlesnyi %T Construction of complex shell models of turbulent systems by computer algebra methods %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 9-31 %V 41 %N 4 %U http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a0/ %G ru %F VKAM_2022_41_4_a0
G. M. Vodinchar; L. K. Feshenko; N. V. Podlesnyi. Construction of complex shell models of turbulent systems by computer algebra methods. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 9-31. http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a0/
[1] Mingshun J., Shida L., “Scaling behavior of velocity and temperature in a shell model for thermal convective turbulence”, Physical Review E, 56 (1997), 441 | DOI
[2] Hattori Y., Rubinstein R., Ishizawa A., “Shell model for rotating turbulence”, Physical Review E, 70 (2004), 046311 | DOI
[3] Ching E. S. C., Guo H., Cheng W. C., “Understanding the different scaling behavior in various shell models proposed for turbulent thermal convection”, Physica D: Nonlinear Phenomena, 237:4 (2008), 2009–2014 | DOI
[4] Frik P. G., Turbulentnost: podkhody i modeli, NITs «RKhD», Moskva–Izhevsk, 2010, 332 pp.
[5] Ditlevsen P., Turbulence and Shell Models, University Press, Cambridge, 2011, 152 pp.
[6] Devenport Dzh., Sire I., Turne E., Kompyuternaya algebra, Mir, M., 1991, 352 pp.
[7] Matrosov A. V., Maple 6. Reshenie zadach vysshei matematiki i mekhaniki, BKhV, SPb., 2001, 528 pp.
[8] Chichkarev E. A., Kompyuternaya matematika s Maxima, ALT Linux, M., 2012, 384 pp.
[9] Vodinchar G. M., Feschenko L. K., “Avtomatizirovannaya generatsiya kaskadnykh modelei turbulentnosti metodami kompyuternoi algebry”, Vychislitelnye tekhnologii, 26:5 (2021), 65–80
[10] Gledzer E. B., “Sistema gidrodinamicheskogo tipa, dopuskayuschaya kvadratichnykh integrala dvizheniya”, DAN SSSR, 209:5 (1973), 1046–1048
[11] Yamada M., Ohkitani K., “Lyapunov Spectrum of a Chaotic Model of Three-Dimensional Turbulence”, J. Phys. Soc. Jpn., 56 (1987), 4210 | DOI
[12] L'vov V., Podivilov E., Pomlyalov A., Procaccia I., Vandembroucq D., “Improved shell model of turbulence”, Phys. Rev. E, 58 (1998), 1811 | DOI
[13] Ditlevsen P., “Symmetries, invariants, and cascades in a shell model of turbulence”, Phys. Rev. E, 62 (2000), 484 | DOI
[14] Plunian F., Stepanov R., “A non-local shell model of hydrodynamic and magnetohydrodynamic turbulence”, New Journal of Physics, 9 (2007), 294 | DOI
[15] Plunian F., Stepanov R. A., Frick P. G., “Shell models of magnetohydrodynamic turbulence”, Physics Reports, 523 (2013), 1–60 | DOI