Inverse problem for McKendrick von Foerster equation with caputo operator
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 111-118
Voir la notice de l'article provenant de la source Math-Net.Ru
Fractional integro-differentiation operators are widely used in the study of applied problems that study mathematical models of physical and geophysical processes in fractal media. The fractional order derivative is not local, which exhibits behavior with long-term memory. Due to this, the models of dynamical systems of fractional order are more accurate than integer ones. In this paper, we consider an inverse problem for a generalized mathematical model of a biological process that characterizes the dynamics of a population with an age structure. The generalization is defined by introducing a derivative of a fractional order in the sense of Caputo into the equation.
Keywords:
inverse problem, McKendrick von Foerster equations, fractional derivative, fertility equation.
@article{VKAM_2022_40_3_a9,
author = {F. M. Losanova},
title = {Inverse problem for {McKendrick} von {Foerster} equation with caputo operator},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {111--118},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a9/}
}
TY - JOUR AU - F. M. Losanova TI - Inverse problem for McKendrick von Foerster equation with caputo operator JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 111 EP - 118 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a9/ LA - ru ID - VKAM_2022_40_3_a9 ER -
F. M. Losanova. Inverse problem for McKendrick von Foerster equation with caputo operator. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 111-118. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a9/