Inverse problem for McKendrick von Foerster equation with caputo operator
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 111-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Fractional integro-differentiation operators are widely used in the study of applied problems that study mathematical models of physical and geophysical processes in fractal media. The fractional order derivative is not local, which exhibits behavior with long-term memory. Due to this, the models of dynamical systems of fractional order are more accurate than integer ones. In this paper, we consider an inverse problem for a generalized mathematical model of a biological process that characterizes the dynamics of a population with an age structure. The generalization is defined by introducing a derivative of a fractional order in the sense of Caputo into the equation.
Keywords: inverse problem, McKendrick von Foerster equations, fractional derivative, fertility equation.
@article{VKAM_2022_40_3_a9,
     author = {F. M. Losanova},
     title = {Inverse problem for {McKendrick} von {Foerster} equation with caputo operator},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {111--118},
     year = {2022},
     volume = {40},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a9/}
}
TY  - JOUR
AU  - F. M. Losanova
TI  - Inverse problem for McKendrick von Foerster equation with caputo operator
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 111
EP  - 118
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a9/
LA  - ru
ID  - VKAM_2022_40_3_a9
ER  - 
%0 Journal Article
%A F. M. Losanova
%T Inverse problem for McKendrick von Foerster equation with caputo operator
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 111-118
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a9/
%G ru
%F VKAM_2022_40_3_a9
F. M. Losanova. Inverse problem for McKendrick von Foerster equation with caputo operator. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 111-118. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a9/

[1] Malthus T. R., An Essay on the principe of population Johnson, London, 1788

[2] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii (izd. 2-e, ispr. i dopoln.), Izdatelstvo RKhD, 2011, 560 pp.

[3] McKendrik A. G., “Applications of mathematics to medical problems”, Proceedings of the Edinburgh Mathematical Society, 44:1 (1926), 98-130

[4] Von Foerster H., “Some remarks on changing populations”, In: F. Stohlman (Ed.), The Kinetics of Cellular proliferation. New York: Grune and Stratton, 1959, 382-407

[5] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995, 301 pp.

[6] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[7] Pskhu A.V., “Kraevaya zadacha dlya differentsialnogo uravneniya s chastnymi proizvodnymi drobnogo poryadka”, Izvestiya KBNTs RAN, 2002, no. 1(8), 76-78

[8] Mamchuev M. O., “Kraevaya zadacha dlya uravneniya pervogo poryadka s chastnoi proizvodnoi drobnogo poryadka s peremennymi koeffitsientami”, Doklady AMAN, 11:1 (2009), 32-35

[9] Mamchuev M. O., “Zadacha Koshi v nelokalnoi postanovke dlya uravneniya pervogo poryadka s chastnoi proizvodnoi drobnogo poryadka s peremennymi koeffitsientami”, Doklady AMAN, 11:2 (2009), 21-24

[10] Pskhu A.V., “O kraevoi zadache dlya uravneniya v chastnykh proizvodnykh drobnogo poryadka v oblasti s krivolineinoi granitsei”, Differents. uravn., 51:8 (2015), 1076-1082

[11] Kaigermazov A. A., Kudaeva F. Kh., “Statsionarnye sostoyaniya obobschennoi populyatsionnoi modeli Veibulla”, Yuzhno – Sibirskii nauchnyi vestnik, 2015, no. 1(19), mart, 10 – 14

[12] Kovaleva M. O., “Vozrastnaya struktura izolirovannoi populyatsii”, Sbornik trudov I Vserossiiskogo kongressa molodykh uchenykh. Spb: NIU ITMO, 2012, 15-20

[13] Losanova F. M., Kenetova R. O., “Nelokalnaya zadacha dlya obobschennogo uravneniya Mak-Kendrika – fon Ferstera s operatorom Kaputo”, Nelineinyi mir, 16:1 (2018), 49-53

[14] Kenetova R. O., Losanova F. M., “O nelokalnoi kraevoi zadache dlya obobschennogo uravneniya Makkendrika-Fon Ferstera”, Izvestiya KBNTs RAN, 2017, no. 2 (76), 49-53

[15] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.