@article{VKAM_2022_40_3_a6,
author = {O. P. Bobrovskaya and T. V. Gavrilenko and V. A. Galkin},
title = {Transport flow model based on interaction of particles with action potential},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {72--87},
year = {2022},
volume = {40},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a6/}
}
TY - JOUR AU - O. P. Bobrovskaya AU - T. V. Gavrilenko AU - V. A. Galkin TI - Transport flow model based on interaction of particles with action potential JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 72 EP - 87 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a6/ LA - ru ID - VKAM_2022_40_3_a6 ER -
%0 Journal Article %A O. P. Bobrovskaya %A T. V. Gavrilenko %A V. A. Galkin %T Transport flow model based on interaction of particles with action potential %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 72-87 %V 40 %N 3 %U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a6/ %G ru %F VKAM_2022_40_3_a6
O. P. Bobrovskaya; T. V. Gavrilenko; V. A. Galkin. Transport flow model based on interaction of particles with action potential. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 72-87. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a6/
[1] Hoogendoorn S., Bovy P. H. L., “State-of-the-art of vehicular traffic flow modeling”, J. Syst. Cont. Eng., 215:4 (2001), 283–303 DOI: 10.1243/0959651011541120
[2] Vlasov A. A., Teoriya transportnykh potokov, PGUAS, Penza, 2014, 124 pp.
[3] Mohmmadsina S., Microscopic Simulation Analysis of Connected and Autonomous Cars and Trucks at a Freeway Merge Area, Electronic Theses and Dissertations, 2021 https://scholar.uwindsor.ca/etd/8613
[4] Zatmeh-Kanj S., Toledo T., “Car Following and Microscopic Traffic Simulation Under Distracted Driving”, Transp. Res. Rec., 2675:8 (2021), 643–656 DOI: 10.1177/03611981211000357 | DOI
[5] Olstam J.J., Tapani A., “Comparison of Car-following models”, VTI meddelande 960A, 2004, 36 pp. https://www.diva-portal.org/smash/get/diva2:673977/FULLTEXT01.pdf
[6] Van Aerde M., Hellinga B., Baker M., Rakha H., “INTEGRATION: An Overview of Traffic Simulation Features”, Published as a conference paper at Transportation Research Board Annual Meeting Washington, D.C., 1996 DOI:10.1.1.116.4552
[7] SUMO. Definition of Vehicles, Vehicle Types, and Routes [Electronic resource]. (date of the application: 06.07.22) SUMO. Definition of Vehicles, Vehicle Types, and Routes
[8] Lopez P.A., Behrisch M., Bieker-Walz L., Erdmann J., Flötteröd Y.-P., Hilbrich R., Lücken L., Rummel J., Wagner P., Wießner E., “Microscopic Traffic Simulation using SUMO”, 2018 IEEE ITSC, 2018, 2575–2582, , IEEE DOI: 10.1109/ITSC.2018.8569938
[9] Treiber M., traffic-simulation.de [Electronic resource]. URL: (date of the application: 06.07.22) https://traffic-simulation.de/ring.html
[10] Shvetsov V. I., “Matematicheskoe modelirovanie transportnykh potokov”, Avtomat. i telemekh., 2003, no. 11, 3–46
[11] Sugiyama Y., Fukui M., Kikuchi M., Hasebe K., Nakayama A., Nishinari K., Tadaki S., Yukawa S., “Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam”, New J. Phys., 10:3 (2008), 033001, DOI: 10.1088/1367-2630/10/3/033001 | DOI
[12] Lu Q., Tettamanti T., Hörcher D., Varga I., “The impact of autonomous vehicles on urban traffic network capacity: an experimental analysis by microscopic traffic simulation”, Transportation Letters, 12:8 (2020), 540–549, DOI: 10.1080/19427867.2019.1662561 | DOI