Transport flow model based on interaction of particles with action potential
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 72-87
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The current booming development of driverless cars raises the question of assessing the impact of their penitration on the traffic flow, which makes the task of creating a mixed model relevant. The object of the research is the traffic flow. The goal is to create an adequate model based on the idea of action potential, in which cars are represented as particles attracting or repelling each other at a certain distance. Existing software products implementing various microscopic models of traffic flow are considered. There is described proposed mathematical model including two kinds of cars: driverless cars strictly obeying the rules and cars with real drivers who allow speeding and random changes of velocity. A program has been developed that implements the created model and allows changing its parameters. The macroscopic characteristics of the simulated flow have been compared with the available values of analogues and works of other researchers. The behavior of simulated cars when driving on a single-lane circular road, a two-lane circular road, and a single-lane figure-of-eight with crossing roads is considered. The results of model runs for mixed flow are presented.
Keywords: traffic flow modelling, car-following models, micro-simulation software, action potential.
@article{VKAM_2022_40_3_a6,
     author = {O. P. Bobrovskaya and T. V. Gavrilenko and V. A. Galkin},
     title = {Transport flow model based on interaction of particles with action potential},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {72--87},
     year = {2022},
     volume = {40},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a6/}
}
TY  - JOUR
AU  - O. P. Bobrovskaya
AU  - T. V. Gavrilenko
AU  - V. A. Galkin
TI  - Transport flow model based on interaction of particles with action potential
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 72
EP  - 87
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a6/
LA  - ru
ID  - VKAM_2022_40_3_a6
ER  - 
%0 Journal Article
%A O. P. Bobrovskaya
%A T. V. Gavrilenko
%A V. A. Galkin
%T Transport flow model based on interaction of particles with action potential
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 72-87
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a6/
%G ru
%F VKAM_2022_40_3_a6
O. P. Bobrovskaya; T. V. Gavrilenko; V. A. Galkin. Transport flow model based on interaction of particles with action potential. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 72-87. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a6/

[1] Hoogendoorn S., Bovy P. H. L., “State-of-the-art of vehicular traffic flow modeling”, J. Syst. Cont. Eng., 215:4 (2001), 283–303 DOI: 10.1243/0959651011541120

[2] Vlasov A. A., Teoriya transportnykh potokov, PGUAS, Penza, 2014, 124 pp.

[3] Mohmmadsina S., Microscopic Simulation Analysis of Connected and Autonomous Cars and Trucks at a Freeway Merge Area, Electronic Theses and Dissertations, 2021 https://scholar.uwindsor.ca/etd/8613

[4] Zatmeh-Kanj S., Toledo T., “Car Following and Microscopic Traffic Simulation Under Distracted Driving”, Transp. Res. Rec., 2675:8 (2021), 643–656 DOI: 10.1177/03611981211000357 | DOI

[5] Olstam J.J., Tapani A., “Comparison of Car-following models”, VTI meddelande 960A, 2004, 36 pp. https://www.diva-portal.org/smash/get/diva2:673977/FULLTEXT01.pdf

[6] Van Aerde M., Hellinga B., Baker M., Rakha H., “INTEGRATION: An Overview of Traffic Simulation Features”, Published as a conference paper at Transportation Research Board Annual Meeting Washington, D.C., 1996 DOI:10.1.1.116.4552

[7] SUMO. Definition of Vehicles, Vehicle Types, and Routes [Electronic resource]. (date of the application: 06.07.22) SUMO. Definition of Vehicles, Vehicle Types, and Routes

[8] Lopez P.A., Behrisch M., Bieker-Walz L., Erdmann J., Flötteröd Y.-P., Hilbrich R., Lücken L., Rummel J., Wagner P., Wießner E., “Microscopic Traffic Simulation using SUMO”, 2018 IEEE ITSC, 2018, 2575–2582, , IEEE DOI: 10.1109/ITSC.2018.8569938

[9] Treiber M., traffic-simulation.de [Electronic resource]. URL: (date of the application: 06.07.22) https://traffic-simulation.de/ring.html

[10] Shvetsov V. I., “Matematicheskoe modelirovanie transportnykh potokov”, Avtomat. i telemekh., 2003, no. 11, 3–46

[11] Sugiyama Y., Fukui M., Kikuchi M., Hasebe K., Nakayama A., Nishinari K., Tadaki S., Yukawa S., “Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam”, New J. Phys., 10:3 (2008), 033001, DOI: 10.1088/1367-2630/10/3/033001 | DOI

[12] Lu Q., Tettamanti T., Hörcher D., Varga I., “The impact of autonomous vehicles on urban traffic network capacity: an experimental analysis by microscopic traffic simulation”, Transportation Letters, 12:8 (2020), 540–549, DOI: 10.1080/19427867.2019.1662561 | DOI