Solution of the boundary problem for the generalized Laplace equation with a fractional derivative
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 53-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the Dirichlet boundary value problem in the upper halfplane for a second-order partial differential equation containing a composition of Riemann-Liouville fractional differentiation operators with respect to one of two independent variables. The equation under consideration, for an integer value of the order of fractional differentiation, passes into the Laplace equation in two independent variables. An explicit representation of the solution of the problem under study (in terms of a function of the Mittag-Leffler type) is obtained by the method of the integral Fourier transform. Asymptotic estimates for a particular solution and its derivatives are found. Theorems on the existence and uniqueness of a regular solution are proved. The existence of a solution is proved in the class of continuous functions with weight in a closed half-plane. The uniqueness of the solution is proved in the class of continuously differentiable functions with respect to the spatial variable and having a corresponding continuous fractional derivative with weight with respect to the time variable in a closed half-plane.
Keywords: fractional derivative, Mittag-Leffler type function, generalized Laplace equation with fractional derivative, Dirichlet problem.
@article{VKAM_2022_40_3_a4,
     author = {O. Kh. Masaeva},
     title = {Solution of the boundary problem for the generalized {Laplace} equation with a fractional derivative},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {53--63},
     year = {2022},
     volume = {40},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a4/}
}
TY  - JOUR
AU  - O. Kh. Masaeva
TI  - Solution of the boundary problem for the generalized Laplace equation with a fractional derivative
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 53
EP  - 63
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a4/
LA  - ru
ID  - VKAM_2022_40_3_a4
ER  - 
%0 Journal Article
%A O. Kh. Masaeva
%T Solution of the boundary problem for the generalized Laplace equation with a fractional derivative
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 53-63
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a4/
%G ru
%F VKAM_2022_40_3_a4
O. Kh. Masaeva. Solution of the boundary problem for the generalized Laplace equation with a fractional derivative. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 53-63. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a4/

[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[2] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[3] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 512 pp.

[4] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Minsk, 1987, 688 pp.

[5] Tarasov V. E., Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, In-t kompyuternykh issledovanii, M.-Izhevsk, 2011, 568 pp.

[6] Mamchuev M. O., Kraevye zadachi dlya uravnenii i sistem uravnenii s chastnymi proizvodnymi drobnogo poryadka, Izd-vo KBNTs RAN, Nalchik, 2013, 200 pp.

[7] Masaeva O. Kh., “Edinstvennost resheniya zadachi Dirikhle dlya mnogomernogo differentsialnogo uravneniya drobnogo poryadka”, Matem. zametki, 109:1 (2021), 101–106

[8] Masaeva O. Kh., “Zadacha Dirikhle dlya obobschennogo uravneniya Laplasa s drobnoi proizvodnoi”, Chelyabinskii fiz.-mat. zhurnal, 2:3 (2017), 312–322

[9] Masaeva O. Kh., “Zadacha Neimana dlya obobschennogo uravneniya Laplasa”, Vestnik KRAUNTs. Fiz.-mat.nauki, 23:1 (2018), 83–90

[10] Masaeva O. Kh., “Edinstvennost resheniya zadachi Dirikhle dlya uravneniya s fraktalnym operatorom Laplasa v glavnoi chasti”, Izvestiya KBNTs RAN, (68)-2:6 (2015), 127–130

[11] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966, 672 pp.

[12] Nakhushev A. M., “O polozhitelnosti operatorov nepreryvnogo i diskretnogo differentsirovaniya i integrirovaniya vesma vazhnykh v drobnom ischislenii i v teorii uravnenii smeshannogo tipa”, Differents. uravneniya, 34:1 (1998), 101–109

[13] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, v. 204, North-Holland Math. Stud., Amsterdam, 2006, 523 pp.

[14] Mainardi F., Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models, Imperial College Press, London, 2010

[15] Pskhu A. V., The Stankovich Integral Transform and Its Applications, Special functions and analysis of differential equations, v. 9, Chapman and Hall/CRC, New York, 2020, 370 pp.

[16] Shishkina E. L., Sitnik S. M., Transmutations, singular and fractional differential equations with applications to mathematical physics , Elsevier, Academic Press, Amsterdam, 2020, 564 pp.

[17] Tarasov V. E., Handbook of Fractional Calculus with Applications, Applications in Physics, Part A,, v. 4, De Gruyter, Berlin, Germany, 2019, 314 pp.

[18] Tarasov, V. E., Handbook of Fractional Calculus with Applications, Applications in Physics, Part B, v. 5, De Gruyter, Berlin, German, 2019, 327 pp.