@article{VKAM_2022_40_3_a4,
author = {O. Kh. Masaeva},
title = {Solution of the boundary problem for the generalized {Laplace} equation with a fractional derivative},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {53--63},
year = {2022},
volume = {40},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a4/}
}
TY - JOUR AU - O. Kh. Masaeva TI - Solution of the boundary problem for the generalized Laplace equation with a fractional derivative JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 53 EP - 63 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a4/ LA - ru ID - VKAM_2022_40_3_a4 ER -
O. Kh. Masaeva. Solution of the boundary problem for the generalized Laplace equation with a fractional derivative. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 53-63. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a4/
[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[2] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.
[3] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 512 pp.
[4] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Minsk, 1987, 688 pp.
[5] Tarasov V. E., Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, In-t kompyuternykh issledovanii, M.-Izhevsk, 2011, 568 pp.
[6] Mamchuev M. O., Kraevye zadachi dlya uravnenii i sistem uravnenii s chastnymi proizvodnymi drobnogo poryadka, Izd-vo KBNTs RAN, Nalchik, 2013, 200 pp.
[7] Masaeva O. Kh., “Edinstvennost resheniya zadachi Dirikhle dlya mnogomernogo differentsialnogo uravneniya drobnogo poryadka”, Matem. zametki, 109:1 (2021), 101–106
[8] Masaeva O. Kh., “Zadacha Dirikhle dlya obobschennogo uravneniya Laplasa s drobnoi proizvodnoi”, Chelyabinskii fiz.-mat. zhurnal, 2:3 (2017), 312–322
[9] Masaeva O. Kh., “Zadacha Neimana dlya obobschennogo uravneniya Laplasa”, Vestnik KRAUNTs. Fiz.-mat.nauki, 23:1 (2018), 83–90
[10] Masaeva O. Kh., “Edinstvennost resheniya zadachi Dirikhle dlya uravneniya s fraktalnym operatorom Laplasa v glavnoi chasti”, Izvestiya KBNTs RAN, (68)-2:6 (2015), 127–130
[11] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966, 672 pp.
[12] Nakhushev A. M., “O polozhitelnosti operatorov nepreryvnogo i diskretnogo differentsirovaniya i integrirovaniya vesma vazhnykh v drobnom ischislenii i v teorii uravnenii smeshannogo tipa”, Differents. uravneniya, 34:1 (1998), 101–109
[13] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, v. 204, North-Holland Math. Stud., Amsterdam, 2006, 523 pp.
[14] Mainardi F., Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models, Imperial College Press, London, 2010
[15] Pskhu A. V., The Stankovich Integral Transform and Its Applications, Special functions and analysis of differential equations, v. 9, Chapman and Hall/CRC, New York, 2020, 370 pp.
[16] Shishkina E. L., Sitnik S. M., Transmutations, singular and fractional differential equations with applications to mathematical physics , Elsevier, Academic Press, Amsterdam, 2020, 564 pp.
[17] Tarasov V. E., Handbook of Fractional Calculus with Applications, Applications in Physics, Part A,, v. 4, De Gruyter, Berlin, Germany, 2019, 314 pp.
[18] Tarasov, V. E., Handbook of Fractional Calculus with Applications, Applications in Physics, Part B, v. 5, De Gruyter, Berlin, German, 2019, 327 pp.