Non-local boundary value problem for a system of ordinary differential equations with Riemann–Liouville derivatives
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 42-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a nonlocal boundary value problem for a linear system of ordinary differential equations of fractional order with constant coefficients on the interval $[0,l]$. The fractional derivative of order $\alpha \in (0,1]$ is understood in the Riemann–Liouville sense. The boundary conditions connect the trace of the fractional integral of the desired vector function at the left end of the segment – at the $x=0$, with the trace of the vector function itself at the right end of the segment at the point $x=l$. The purpose of this work is to construct an explicit representation of the solution of this problem in terms of the Green's function. The structure of the solution to the boundary value problem is investigated, the corresponding Green's function is defined and constructed, and the representation of the solution is obtained. A theorem on the unique solvability of the boundary value problem under study is proved.
Keywords: system of ordinary differential equations, fractional derivatives, non-local boundary value problem, Green's function.
@article{VKAM_2022_40_3_a3,
     author = {M. O. Mamchuev and T. I. Zhabelova},
     title = {Non-local boundary value problem for a system of ordinary differential equations with {Riemann{\textendash}Liouville} derivatives},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {42--52},
     year = {2022},
     volume = {40},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a3/}
}
TY  - JOUR
AU  - M. O. Mamchuev
AU  - T. I. Zhabelova
TI  - Non-local boundary value problem for a system of ordinary differential equations with Riemann–Liouville derivatives
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 42
EP  - 52
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a3/
LA  - ru
ID  - VKAM_2022_40_3_a3
ER  - 
%0 Journal Article
%A M. O. Mamchuev
%A T. I. Zhabelova
%T Non-local boundary value problem for a system of ordinary differential equations with Riemann–Liouville derivatives
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 42-52
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a3/
%G ru
%F VKAM_2022_40_3_a3
M. O. Mamchuev; T. I. Zhabelova. Non-local boundary value problem for a system of ordinary differential equations with Riemann–Liouville derivatives. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 42-52. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a3/

[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[2] Oldham K. B., Spanier J., The fractional calculus (Theory and applications of of differentiation and integration to arbitrary order), Academic press, N.Y., London, 1974, 233 pp.

[3] Hilfer R., Applications of fractional calculus in physics, World scientific, Singapore, 2000

[4] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 512 pp.

[5] Veber V. K., “Lineinye uravneniya s drobnymi proizvodnymi i postoyannymi koeffitsientami v prostranstvakh obobschennykh funktsii”, Issledovaniya po integro-differentsialnym uravneniyam v Kirgizii, v. 18, Ilim, Frunze, 1985, 306–312

[6] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977, 384 pp.

[7] Rozovskii M. I., “Integralnye operatory i zadacha o polzuchesti vraschayuschegosya vokrug svoei osi pustotelogo tsilindra”, Nauch. dokl. vyssh. shkoly, fiz.-mat. nauki, 1958, no. 6, 147–150

[8] Area I., Batarfi H., Losada J., Nieto J. J., Shammakh W., Torres A., “On a fractional order Ebola epidemic model”, Advances in Difference Equations, 2015:278 (2015), 1–12 DOI: 10.1186/s13662-015-0613-5

[9] Yildiz T. A., “Optimal control problem of a non-integer order waterborne pathogen model in case of environmental stressors”, Frontiers in Physics, 7:95 (2015), 1–10 DOI: 10.3389/fphy.2019.00095

[10] Veber V. K., “Struktura obschego resheniya sistemy $y^{(\alpha)} = Ay,$ $0 \alpha \leq 1$”, Tr. Kirg. un-ta. Ser. mat. nauk., 1976, no. 11, 26–32

[11] Imanaliev M. I., Veber V. K., “Ob odnom obobschenii funktsii tipa Mittag-Lefflera i ego primenenii”, Issledovaniya po integro-differentsialnym uravneniyam v Kirgizii, v. 13, Ilim, Frunze, 1980, 49–59

[12] Veber V. K., “Asimptoticheskoe povedenie reshenii lineinoi sistemy differentsialnykh uravnenii drobnogo poryadka”, Issledovaniya po integro-differentsialnym uravneniyam v Kirgizii, v. 16, Ilim, Frunze, 1983, 119–125

[13] Veber V. K., “K obschei teorii lineinykh sistem s drobnymi proizvodnymi”, Issledovaniya po integro-differentsialnym uravneniyam v Kirgizii, v. 18, Ilim, Frunze, 1985, 301–305

[14] Chikrii A. A., Matichin I. I., “Ob analoge formuly Koshi dlya lineinykh sistem proizvolnogo drobnogo poryadka”, Doklady Natsionalnoi akademii nauk Ukrainy, 2007, no. 1, 53–55

[15] Bonilla B., Rivero M., Trujillo J. J., “On systems of linear fractional differential equations with constant coefficients”, Applied Mathematics and Computation, 187:1 (2007), 68–78 DOI: 10.1016/j.amc.2006.08.104 | DOI

[16] Chikriy A. A., Matichin I. I., “Presentation of Solutions of Linear Systems with Fractional Derivatives in the Sense of Riemann-Liouville, Caputo, and Miller-Ross”, Journal of Automation and Information Sciences, 40:6 (2008), 1–11 DOI: 10.1615/JAutomatInfScien.v40.i6.10 | DOI

[17] Matichin I., Onyshchenko V., “Optimal control of linear systems with fractional derivatives”, Fractional Calculus and Applied Analysis, 21:1 (2018), 134–150 DOI: 10.1515/fca-2018-0009 | DOI

[18] Matichin I., Onyshchenko V., “Matrix Mittag-Leffler function in fractional systems and its computation”, Bulletin of the Polish academy of sciences Technical sciences, 66:4 (2018), 495–500 DOI: 10.24425/124266

[19] Mamchuev M. O., “Cauchy problem for a linear system of ordinary differential equations of the fractional order”, Mathematics, 8:9:1475 (2020), 1–11 DOI:10.3390/math8091475 | DOI

[20] Kamocki R., Majewski M., “Fractional linear control systems with Caputo derivative and their optimization”, Optimal Control Applications and Methods, 36:6 (2015), 953–967 DOI: 10.1002/oca.2150 | DOI

[21] Buedo-Fernández S., Nieto J. J., “Basic control theory for linear fractional differential equations with constant coefficients”, Frontiers in Physics, 8:377 (2020), 1–6 doi: 10.3389/fphy.2020.00377

[22] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, Moskva, 1966, 672 pp.