@article{VKAM_2022_40_3_a3,
author = {M. O. Mamchuev and T. I. Zhabelova},
title = {Non-local boundary value problem for a system of ordinary differential equations with {Riemann{\textendash}Liouville} derivatives},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {42--52},
year = {2022},
volume = {40},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a3/}
}
TY - JOUR AU - M. O. Mamchuev AU - T. I. Zhabelova TI - Non-local boundary value problem for a system of ordinary differential equations with Riemann–Liouville derivatives JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 42 EP - 52 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a3/ LA - ru ID - VKAM_2022_40_3_a3 ER -
%0 Journal Article %A M. O. Mamchuev %A T. I. Zhabelova %T Non-local boundary value problem for a system of ordinary differential equations with Riemann–Liouville derivatives %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 42-52 %V 40 %N 3 %U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a3/ %G ru %F VKAM_2022_40_3_a3
M. O. Mamchuev; T. I. Zhabelova. Non-local boundary value problem for a system of ordinary differential equations with Riemann–Liouville derivatives. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 42-52. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a3/
[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[2] Oldham K. B., Spanier J., The fractional calculus (Theory and applications of of differentiation and integration to arbitrary order), Academic press, N.Y., London, 1974, 233 pp.
[3] Hilfer R., Applications of fractional calculus in physics, World scientific, Singapore, 2000
[4] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 512 pp.
[5] Veber V. K., “Lineinye uravneniya s drobnymi proizvodnymi i postoyannymi koeffitsientami v prostranstvakh obobschennykh funktsii”, Issledovaniya po integro-differentsialnym uravneniyam v Kirgizii, v. 18, Ilim, Frunze, 1985, 306–312
[6] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977, 384 pp.
[7] Rozovskii M. I., “Integralnye operatory i zadacha o polzuchesti vraschayuschegosya vokrug svoei osi pustotelogo tsilindra”, Nauch. dokl. vyssh. shkoly, fiz.-mat. nauki, 1958, no. 6, 147–150
[8] Area I., Batarfi H., Losada J., Nieto J. J., Shammakh W., Torres A., “On a fractional order Ebola epidemic model”, Advances in Difference Equations, 2015:278 (2015), 1–12 DOI: 10.1186/s13662-015-0613-5
[9] Yildiz T. A., “Optimal control problem of a non-integer order waterborne pathogen model in case of environmental stressors”, Frontiers in Physics, 7:95 (2015), 1–10 DOI: 10.3389/fphy.2019.00095
[10] Veber V. K., “Struktura obschego resheniya sistemy $y^{(\alpha)} = Ay,$ $0 \alpha \leq 1$”, Tr. Kirg. un-ta. Ser. mat. nauk., 1976, no. 11, 26–32
[11] Imanaliev M. I., Veber V. K., “Ob odnom obobschenii funktsii tipa Mittag-Lefflera i ego primenenii”, Issledovaniya po integro-differentsialnym uravneniyam v Kirgizii, v. 13, Ilim, Frunze, 1980, 49–59
[12] Veber V. K., “Asimptoticheskoe povedenie reshenii lineinoi sistemy differentsialnykh uravnenii drobnogo poryadka”, Issledovaniya po integro-differentsialnym uravneniyam v Kirgizii, v. 16, Ilim, Frunze, 1983, 119–125
[13] Veber V. K., “K obschei teorii lineinykh sistem s drobnymi proizvodnymi”, Issledovaniya po integro-differentsialnym uravneniyam v Kirgizii, v. 18, Ilim, Frunze, 1985, 301–305
[14] Chikrii A. A., Matichin I. I., “Ob analoge formuly Koshi dlya lineinykh sistem proizvolnogo drobnogo poryadka”, Doklady Natsionalnoi akademii nauk Ukrainy, 2007, no. 1, 53–55
[15] Bonilla B., Rivero M., Trujillo J. J., “On systems of linear fractional differential equations with constant coefficients”, Applied Mathematics and Computation, 187:1 (2007), 68–78 DOI: 10.1016/j.amc.2006.08.104 | DOI
[16] Chikriy A. A., Matichin I. I., “Presentation of Solutions of Linear Systems with Fractional Derivatives in the Sense of Riemann-Liouville, Caputo, and Miller-Ross”, Journal of Automation and Information Sciences, 40:6 (2008), 1–11 DOI: 10.1615/JAutomatInfScien.v40.i6.10 | DOI
[17] Matichin I., Onyshchenko V., “Optimal control of linear systems with fractional derivatives”, Fractional Calculus and Applied Analysis, 21:1 (2018), 134–150 DOI: 10.1515/fca-2018-0009 | DOI
[18] Matichin I., Onyshchenko V., “Matrix Mittag-Leffler function in fractional systems and its computation”, Bulletin of the Polish academy of sciences Technical sciences, 66:4 (2018), 495–500 DOI: 10.24425/124266
[19] Mamchuev M. O., “Cauchy problem for a linear system of ordinary differential equations of the fractional order”, Mathematics, 8:9:1475 (2020), 1–11 DOI:10.3390/math8091475 | DOI
[20] Kamocki R., Majewski M., “Fractional linear control systems with Caputo derivative and their optimization”, Optimal Control Applications and Methods, 36:6 (2015), 953–967 DOI: 10.1002/oca.2150 | DOI
[21] Buedo-Fernández S., Nieto J. J., “Basic control theory for linear fractional differential equations with constant coefficients”, Frontiers in Physics, 8:377 (2020), 1–6 doi: 10.3389/fphy.2020.00377
[22] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, Moskva, 1966, 672 pp.