Equivalence of paths in some non-euclidean geometry
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 28-41
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a subgroup of the group of all reversible linear transformations of a finitedimensional real space $R^n$. One of the problems of differential geometry is to find easily verifiable necessary and sufficient conditions that ensure that $G$ is the equivalence of paths lying in $R^n$. The article establishes the necessary and sufficient conditions for the equivalence of paths in some non-Euclidean geometry.
Keywords:
pseugo-Galilean space, group of movements, regular path.
@article{VKAM_2022_40_3_a2,
author = {R. A. Gafforov and K. K. Muminov},
title = {Equivalence of paths in some non-euclidean geometry},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {28--41},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a2/}
}
TY - JOUR AU - R. A. Gafforov AU - K. K. Muminov TI - Equivalence of paths in some non-euclidean geometry JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 28 EP - 41 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a2/ LA - ru ID - VKAM_2022_40_3_a2 ER -
R. A. Gafforov; K. K. Muminov. Equivalence of paths in some non-euclidean geometry. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 28-41. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a2/