Equivalence of paths in some non-euclidean geometry
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 28-41

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a subgroup of the group of all reversible linear transformations of a finitedimensional real space $R^n$. One of the problems of differential geometry is to find easily verifiable necessary and sufficient conditions that ensure that $G$ is the equivalence of paths lying in $R^n$. The article establishes the necessary and sufficient conditions for the equivalence of paths in some non-Euclidean geometry.
Keywords: pseugo-Galilean space, group of movements, regular path.
@article{VKAM_2022_40_3_a2,
     author = {R. A. Gafforov and K. K. Muminov},
     title = {Equivalence of paths in some non-euclidean geometry},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {28--41},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a2/}
}
TY  - JOUR
AU  - R. A. Gafforov
AU  - K. K. Muminov
TI  - Equivalence of paths in some non-euclidean geometry
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 28
EP  - 41
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a2/
LA  - ru
ID  - VKAM_2022_40_3_a2
ER  - 
%0 Journal Article
%A R. A. Gafforov
%A K. K. Muminov
%T Equivalence of paths in some non-euclidean geometry
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 28-41
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a2/
%G ru
%F VKAM_2022_40_3_a2
R. A. Gafforov; K. K. Muminov. Equivalence of paths in some non-euclidean geometry. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 28-41. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a2/