Equivalence of paths in some non-euclidean geometry
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 28-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a subgroup of the group of all reversible linear transformations of a finitedimensional real space $R^n$. One of the problems of differential geometry is to find easily verifiable necessary and sufficient conditions that ensure that $G$ is the equivalence of paths lying in $R^n$. The article establishes the necessary and sufficient conditions for the equivalence of paths in some non-Euclidean geometry.
Keywords: pseugo-Galilean space, group of movements, regular path.
@article{VKAM_2022_40_3_a2,
     author = {R. A. Gafforov and K. K. Muminov},
     title = {Equivalence of paths in some non-euclidean geometry},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {28--41},
     year = {2022},
     volume = {40},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a2/}
}
TY  - JOUR
AU  - R. A. Gafforov
AU  - K. K. Muminov
TI  - Equivalence of paths in some non-euclidean geometry
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 28
EP  - 41
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a2/
LA  - ru
ID  - VKAM_2022_40_3_a2
ER  - 
%0 Journal Article
%A R. A. Gafforov
%A K. K. Muminov
%T Equivalence of paths in some non-euclidean geometry
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 28-41
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a2/
%G ru
%F VKAM_2022_40_3_a2
R. A. Gafforov; K. K. Muminov. Equivalence of paths in some non-euclidean geometry. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 28-41. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a2/

[1] Muminov K. K., Chilin V. I., Ekvivalentnost krivykh v konechnomernykh vektornykh prostranstvakh, LAMBERT Academic Publishing, Deutschland (Germaniya), 2015, 122 pp.

[2] Muminov K. K. Chilin V. I., “Bazisy transtsendentnosti v differentsialnom pole invariantov psevdogalileevoi gruppy”, Izvestiya VUZov, Matematika, 2019, no. 3, 19–31 DOI: 10.26907/0021-3446-2019-3-19-31

[3] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969, 549 pp.

[4] Aleksandrov P. S., Kurs analiticheskoi geometrii i lineinoi algebry, Nauka, M., 1979, 512 pp.

[5] Muminov K. K., “Ekvivalentnost putei otnositelno deistviya simplekticheskoi gruppy”, Izvestiya VUZov, Matematika, 2002, no. 7, 27–38

[6] Muminov K. K., “Ekvivalentnost putei i poverkhnostei dlya deistviya psevdoortogonalnoi gruppy”, Uzbekskii matematicheskii zhurnal, 2005, no. 2, 35–43

[7] Muminov K. K., “Ekvivlentnost krivykh otnositelno deistviya simplekticheskoi gruppy”, Izvestiya VUZov, Matematika, 2009, no. 6, 31–36

[8] Muminov K. K., Gafforov R. A., “Ekvivalentntnost putei otnositelno deistviya spetsialnoi psevdoortogonalnoi gruppy”, Uzbekskii matematicheskii zhurnal, 2010, no. 4, 135–141

[9] Muminov K. K., Gafforov R. A., “Ekvivalentnost konechnykh sistem putei otnositelno deistviya spetsialnoi psevdoortogonalnoi gruppy”, Uchenye zapiski Tavricheskogo natsionalnogo universiteta im. V. I. Vernadskogo. Seriya Fiziko-matematicheskie nauki, 24 (63):1 (2011), 90–100

[10] Khadjiev Dj., Peksen O., “On invariants of curves in centro – affine geometry”, J. Math. Kyoto Univ. (JMKYAZ), 44:3 (2004), 603–613 DOI: 10.1215/kjm/1250283086

[11] Khadjiev Dj., Peksen O., “The complete system of global integral and differential invariants for equi-affin curves”, Differential Geometry and its Applications, 20:2 (2004), 167–175 DOI: 10.1016/j.difgeo.2003.10.005 | DOI

[12] Chilin V. I., Muminov K. K., “Polnaya sistema differentsialnykh invariantov krivoi v psevdoevklidovom prostranstve”, Dinamicheskie sistemy, 3(31):1-2 (2013), 135–149

[13] Chilin V. I., Muminov K. K., “Klassifikatsiya putei v geometrii Galileya”, Tavricheskii vestnik informatiki i matematiki, 2017, no. 1, 95–111

[14] Chilin V. I., Muminov K. K., “Ekvivalentnost putei v geometrii Gallileya”, Itogi nauki i tekhniki Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 2018, no. 144, 3–16 DOI: 10.1007/s.10958-020-04691-7

[15] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, New York-London, 1973

[16] Khadzhiev Dzh., Prilozhenie teorii invariantov k differentsialnoi geometrii krivykh, FAN, Tashkent, 1998, 136 pp.