Optimal quadrature formulas in the space $\widetilde{W_2}^{(m,m-1)}$of periodic functions
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 211-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the process of finding the upper bound for the absolute error of the optimal quadrature formula in the space $\widetilde{W_2}^{(m,m-1)}$of real-valued, periodic functions. For this the extremal function of the quadrature formula is used. In addition, it is shown that the norm of the error functional for the optimal quadrature formula constructed in the space $\widetilde{W_2}^{(m,m-1)}$ is less than the value of the norm of the error functional for the optimal quadrature formula in the Sobolev space $\widetilde{L_2}^{(m)}$.
Keywords: the Hilbert space, the error functional
Mots-clés : optimal quadrature formula, optimal coefficients, error of quadrature formula, Fourier transform.
@article{VKAM_2022_40_3_a16,
     author = {A. R. Hayotov and U. N. Khayriev},
     title = {Optimal quadrature formulas in the space $\widetilde{W_2}^{(m,m-1)}$of periodic functions},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {211--226},
     year = {2022},
     volume = {40},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a16/}
}
TY  - JOUR
AU  - A. R. Hayotov
AU  - U. N. Khayriev
TI  - Optimal quadrature formulas in the space $\widetilde{W_2}^{(m,m-1)}$of periodic functions
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 211
EP  - 226
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a16/
LA  - en
ID  - VKAM_2022_40_3_a16
ER  - 
%0 Journal Article
%A A. R. Hayotov
%A U. N. Khayriev
%T Optimal quadrature formulas in the space $\widetilde{W_2}^{(m,m-1)}$of periodic functions
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 211-226
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a16/
%G en
%F VKAM_2022_40_3_a16
A. R. Hayotov; U. N. Khayriev. Optimal quadrature formulas in the space $\widetilde{W_2}^{(m,m-1)}$of periodic functions. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 211-226. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a16/

[1] Baboş A., Acu A. M., “Note on Corrected Optimal Quadrature Formulas in the Sense Nikolski”, Applied Mathematics and Information Sciences an International Journal, 9:3 (2015), 1231–1238

[2] Iserles A., Norsett S. P., “Efficient quadrature of highly oscillatory integrals using derivatives”, Proc. R. Soc. A, 461 (2005), 1383–1399 | DOI

[3] Boltaev A. K., Shadimetov Kh. M., Nuraliev F. A., “The extremal function of interpolation formulas in $W_2^{(2,0)}$ space”, Vestnik KRAUNC. Fiz.-Mat. nauki, 36:3 (2021), 123–132

[4] Burden A. M., Faires J. D., Burden R. L., Numerical analysis, 10th edition, Cengage Learning, Boston, Massachusetts, 2016

[5] Hayotov A. R., Milovanović G. V., Shadimetov Kh. M., “Optimal quadratures in the sense of Sard in a Hilbert space”, Applied Mathematics and Computation, 259 (2015), 637–653 | DOI

[6] Hayotov A. R., Jeon S., Lee C-O., Shadimetov Kh. M., “Optimal quadrature formulas for non-periodic functions in Sobolev space and its application to CT image reconstruction”, Filomat, 35:12 (2021), 4177–4195 | DOI

[7] Hayotov A. R., Jeon S., Shadimetov Kh. M., “Application of optimal quadrature formulas for reconstruction of CT images”, Journal of Computational and Applied Mathematics, 388 (2021), 113313 | DOI

[8] Hayotov A. R., Babaev S. S., “Optimal quadrature formulas for computing of Fourier integrals in $W_2^{(m,m-1)}$ space”, AIP Conference Proceedings, 2365 (2021), 020021 | DOI

[9] Hayotov A. R., Jeon S., Lee Ch.-O., “On an optimal quadrature formula for approximation of Fourier integrals in the space $L_2^{(1)}$”, Journal of Computational and Applied Mathematics, 372 (2020), 112713 | DOI

[10] Hayotov A. R., Khayriev U. N., “Construction of an optimal quadrature formula in the Hilbert space of periodic functions”, Lobachevskii Journal of Mathematics, 2022

[11] Sard A., “Best approximate integration formulas; best approximation formulas”, Amer. J. Math., 71 (1949), 80–91 | DOI

[12] Demidenko G. V., Vaskevich V. L., Selected Works of S. L. Sobolev, Springer, New York, 2006, 603 pp.

[13] Milovanović G. V., StanićM. P., “Numerical Integration of Highly Oscillating Functions”, Analytic Number Theory, Approximation Theory and Special Functions, Springer, Berlin, 2014, 613–649 | DOI

[14] Milovanovi ć G. V., “Numerical calculation of integrals involving oscillatory and singular kernels and some applications of quadratures”, Comp. Math. Applic, 36:8 (1998), 19–39 | DOI

[15] Shadimetov Kh. M., Boltaev A. K., Parovik R. I., “Construction of optimal interpolation formula exact for trigonometric functions by Sobolev’s method”, Vestnik KRAUNC. Fiz.-Mat. nauki, 38:1 (2022), 131–146

[16] Shadimetov Kh. M., Optimal lattice quadrature and cubature formulas in Sobolev spaces, Fan, Tashkent, 2019 (In Russian)

[17] Shadimetov Kh. M. , “Weighted optimal quadrature formulas in a periodic Sobolev space”, Uzbek Math. Journal, 1998, no. 2, 76–86

[18] Shadimetov Kh. M.., “Weighted optimal cubature formulas in the periodic Sobolev space”, Siberian Journal of Computational Mathematics, 1999, no. 2 \value 2, 185–196

[19] Filon L. N. G., “On a quadrature formula for trigonometric integrals”, Proc. Roy. Soc., 49 (1928), 38–47

[20] Temme N. M., Special functions: An introduction to the classical functions of mathematical physics, A Wiley-Interscience, New York, 1996, 374 pp.

[21] Bakhvalov N. S., Vasil’eva L. G., “Evaluation of the integrals of oscillating functions by interpolation at nodes of Gaussian quadratures”, USSR Computational Mathematics and Mathematical Physics, 8 (1968), 241–249 (In Russian) | DOI

[22] Sobolev S. L., Vaskevich V. L., The Theory of Cubature Formulas, Kluwer Academic Publishers Group, Dordrecht, 1997

[23] Nikolskii S. M., Quadrature formulas, Nauka, Moscow, 1988 (In Russian)

[24] Olver S., Numerical Approximation of Highly Oscillatory Integrals, PhD dissertation, University of Cambridge, 2008

[25] Babaev S. S., Hayotov A. R., Khayriev U. N., “On an optimal quadrature formula for approximation of Fourier integrals in the space $W_2^{(1,0)}$”, Uzbek Mathematical Journal, 2020, no. 2, 23–36 | DOI

[26] Xu Z. Milovanović G. V., Xiang S., “Efficient computation of highly oscillatory integrals with Henkel kernel”, Appl. Math. Comp., 261 (2015), 312–322 | DOI