Mots-clés : optimal quadrature formula, optimal coefficients, error of quadrature formula, Fourier transform.
@article{VKAM_2022_40_3_a16,
author = {A. R. Hayotov and U. N. Khayriev},
title = {Optimal quadrature formulas in the space $\widetilde{W_2}^{(m,m-1)}$of periodic functions},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {211--226},
year = {2022},
volume = {40},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a16/}
}
TY - JOUR
AU - A. R. Hayotov
AU - U. N. Khayriev
TI - Optimal quadrature formulas in the space $\widetilde{W_2}^{(m,m-1)}$of periodic functions
JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY - 2022
SP - 211
EP - 226
VL - 40
IS - 3
UR - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a16/
LA - en
ID - VKAM_2022_40_3_a16
ER -
%0 Journal Article
%A A. R. Hayotov
%A U. N. Khayriev
%T Optimal quadrature formulas in the space $\widetilde{W_2}^{(m,m-1)}$of periodic functions
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 211-226
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a16/
%G en
%F VKAM_2022_40_3_a16
A. R. Hayotov; U. N. Khayriev. Optimal quadrature formulas in the space $\widetilde{W_2}^{(m,m-1)}$of periodic functions. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 211-226. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a16/
[1] Baboş A., Acu A. M., “Note on Corrected Optimal Quadrature Formulas in the Sense Nikolski”, Applied Mathematics and Information Sciences an International Journal, 9:3 (2015), 1231–1238
[2] Iserles A., Norsett S. P., “Efficient quadrature of highly oscillatory integrals using derivatives”, Proc. R. Soc. A, 461 (2005), 1383–1399 | DOI
[3] Boltaev A. K., Shadimetov Kh. M., Nuraliev F. A., “The extremal function of interpolation formulas in $W_2^{(2,0)}$ space”, Vestnik KRAUNC. Fiz.-Mat. nauki, 36:3 (2021), 123–132
[4] Burden A. M., Faires J. D., Burden R. L., Numerical analysis, 10th edition, Cengage Learning, Boston, Massachusetts, 2016
[5] Hayotov A. R., Milovanović G. V., Shadimetov Kh. M., “Optimal quadratures in the sense of Sard in a Hilbert space”, Applied Mathematics and Computation, 259 (2015), 637–653 | DOI
[6] Hayotov A. R., Jeon S., Lee C-O., Shadimetov Kh. M., “Optimal quadrature formulas for non-periodic functions in Sobolev space and its application to CT image reconstruction”, Filomat, 35:12 (2021), 4177–4195 | DOI
[7] Hayotov A. R., Jeon S., Shadimetov Kh. M., “Application of optimal quadrature formulas for reconstruction of CT images”, Journal of Computational and Applied Mathematics, 388 (2021), 113313 | DOI
[8] Hayotov A. R., Babaev S. S., “Optimal quadrature formulas for computing of Fourier integrals in $W_2^{(m,m-1)}$ space”, AIP Conference Proceedings, 2365 (2021), 020021 | DOI
[9] Hayotov A. R., Jeon S., Lee Ch.-O., “On an optimal quadrature formula for approximation of Fourier integrals in the space $L_2^{(1)}$”, Journal of Computational and Applied Mathematics, 372 (2020), 112713 | DOI
[10] Hayotov A. R., Khayriev U. N., “Construction of an optimal quadrature formula in the Hilbert space of periodic functions”, Lobachevskii Journal of Mathematics, 2022
[11] Sard A., “Best approximate integration formulas; best approximation formulas”, Amer. J. Math., 71 (1949), 80–91 | DOI
[12] Demidenko G. V., Vaskevich V. L., Selected Works of S. L. Sobolev, Springer, New York, 2006, 603 pp.
[13] Milovanović G. V., StanićM. P., “Numerical Integration of Highly Oscillating Functions”, Analytic Number Theory, Approximation Theory and Special Functions, Springer, Berlin, 2014, 613–649 | DOI
[14] Milovanovi ć G. V., “Numerical calculation of integrals involving oscillatory and singular kernels and some applications of quadratures”, Comp. Math. Applic, 36:8 (1998), 19–39 | DOI
[15] Shadimetov Kh. M., Boltaev A. K., Parovik R. I., “Construction of optimal interpolation formula exact for trigonometric functions by Sobolev’s method”, Vestnik KRAUNC. Fiz.-Mat. nauki, 38:1 (2022), 131–146
[16] Shadimetov Kh. M., Optimal lattice quadrature and cubature formulas in Sobolev spaces, Fan, Tashkent, 2019 (In Russian)
[17] Shadimetov Kh. M. , “Weighted optimal quadrature formulas in a periodic Sobolev space”, Uzbek Math. Journal, 1998, no. 2, 76–86
[18] Shadimetov Kh. M.., “Weighted optimal cubature formulas in the periodic Sobolev space”, Siberian Journal of Computational Mathematics, 1999, no. 2 \value 2, 185–196
[19] Filon L. N. G., “On a quadrature formula for trigonometric integrals”, Proc. Roy. Soc., 49 (1928), 38–47
[20] Temme N. M., Special functions: An introduction to the classical functions of mathematical physics, A Wiley-Interscience, New York, 1996, 374 pp.
[21] Bakhvalov N. S., Vasil’eva L. G., “Evaluation of the integrals of oscillating functions by interpolation at nodes of Gaussian quadratures”, USSR Computational Mathematics and Mathematical Physics, 8 (1968), 241–249 (In Russian) | DOI
[22] Sobolev S. L., Vaskevich V. L., The Theory of Cubature Formulas, Kluwer Academic Publishers Group, Dordrecht, 1997
[23] Nikolskii S. M., Quadrature formulas, Nauka, Moscow, 1988 (In Russian)
[24] Olver S., Numerical Approximation of Highly Oscillatory Integrals, PhD dissertation, University of Cambridge, 2008
[25] Babaev S. S., Hayotov A. R., Khayriev U. N., “On an optimal quadrature formula for approximation of Fourier integrals in the space $W_2^{(1,0)}$”, Uzbek Mathematical Journal, 2020, no. 2, 23–36 | DOI
[26] Xu Z. Milovanović G. V., Xiang S., “Efficient computation of highly oscillatory integrals with Henkel kernel”, Appl. Math. Comp., 261 (2015), 312–322 | DOI