Mots-clés : oscillogram.
@article{VKAM_2022_40_3_a14,
author = {V. A. Kim and R. I. Parovik},
title = {Implicit finite-difference scheme for a {Duffing} oscillator with a derivative of variable fractional order of the {Riemann-Liouville} type},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {179--198},
year = {2022},
volume = {40},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a14/}
}
TY - JOUR AU - V. A. Kim AU - R. I. Parovik TI - Implicit finite-difference scheme for a Duffing oscillator with a derivative of variable fractional order of the Riemann-Liouville type JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 179 EP - 198 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a14/ LA - ru ID - VKAM_2022_40_3_a14 ER -
%0 Journal Article %A V. A. Kim %A R. I. Parovik %T Implicit finite-difference scheme for a Duffing oscillator with a derivative of variable fractional order of the Riemann-Liouville type %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 179-198 %V 40 %N 3 %U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a14/ %G ru %F VKAM_2022_40_3_a14
V. A. Kim; R. I. Parovik. Implicit finite-difference scheme for a Duffing oscillator with a derivative of variable fractional order of the Riemann-Liouville type. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 179-198. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a14/
[1] Nakhushev A. M., Drobnoe ischislenie i ego priminenie, Fizmatlit, M., 2003, 272 pp.
[2] Petras I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, New York, 2010, 180 pp.
[3] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2001, 296 pp.
[4] Zeldovich B. Ya., Tabiryan N. V., “Opticheskaya bistabilnost na orientatsionnoi nelineinosti zhidkikh kristallov”, Kvantovaya elektronika, 11:12 (1984), 2419–2426 DOI: 10.1070/QE1984v014n12ABEH006232
[5] Eskov V. V. i dr., “Khaoticheskaya dinamika miogramm”, Vestnik novykh meditsinskikh tekhnologii. Elektronnoe izdanie, 2016, no. 3 DOI: 12737/21668
[6] Ejikeme C. L., et al., “Solution to nonlinear Duffing oscillator with fractional derivatives using homotopy analysis method (HAM)”, Global Journal of Pure and Applied Mathematics, 14:10 (2018), 1363–1388 ISSN 0973-1768
[7] Syta A., “Chaotic vibrations of the Duffing system with fractional damping”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24:1 (2014), 10–16 DOI: 10.1063/1.4861942 | DOI
[8] Xing W., “Threshold for chaos of a duffing oscillator with fractional-order derivative”, Shock Vib., 2019 (2019), 1–16
[9] Shen Y., Li H., Yang S., Peng M., Han Y., “Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator”, Nonlinear Dyn., 102 (2020), 1485–1497 | DOI
[10] El-Dib Y. O., “Stability approach of a fractional-delayed Duffing oscillator”, Discontinuity Nonlinearity Complex, 9 (2020), 367–376 | DOI
[11] Eze S. C., “Analysis of fractional Duffing oscillator”, Rev. Mex. Física, 66 (2020), 187–191 | DOI
[12] Gouari Y., Dahmani Z., Jebril I., “Application of fractional calculus on a new differential problem of Duffing type”, Adv. Math. Sci. J., 9 (2020), 10989–11002 | DOI
[13] Syam M. I., “The Modified Fractional Power Series Method for Solving Fractional Undamped Duffing Equation with Cubic Nonlinearity”, Nonlinear Dyn. Syst. Theory, 20 (2020), 568–577
[14] Barba-Franco J. J., Gallegos A., Jaimes-Reátegui R., Pisarchik A. N., “Dynamics of a ring of three fractional-order Duffing oscillators”, Chaos Solitons Fractals, 155 (2022), 111–747 | DOI
[15] Kim V. A., “Ostsillyator Duffinga s vneshnim garmonicheskim vozdeistviem i proizvodnoi peremennogo drobnogo poryadka Rimana-Liuvillya, kharakterizuyuschaya vyazkoe trenie”, Vestnik KRAUNTs. Fiz.-mat. nauki, 13:2 (2016), 46–49 DOI: 10.18454/2079-6641-2016-13-2-50-54
[16] Kim V. A., Parovik R. I., “Raschet maksimalnykh pokazatelei Lyapunova dlya kolebatelnoi sistemy Duffinga so stepennoi pamyatyu”, Vestnik KRAUNTs. Fiz.-mat. nauki, 23:3 (2018), 98–105 DOI: 10.18454/2079-6641-2018-23-3-98-105
[17] Kim V. A., Parovik R. I., “Application of the Explicit Euler Method for Numerical Analysis of a Nonlinear Fractional Oscillation Equation”, Fractional and fractals, 6:5 (2022), 274–293 DOI: 10.3390/fractalfract6050274 | DOI
[18] Kim V. A., Parovik R. I., “Issledovanie vynuzhdennykh kolebanii ostsillyatora Duffinga s proizvodnoi peremennogo drobnogo poryadka Rimana-Liuvillya”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 93:1 (2020), 46–56 DOI: 10.35330/1991-6639-2020-1-93-46-56
[19] Kim V. A., Parovik R. I., “Mathematical model of fractional Duffing oscillator with variable memory”, Mathematics, 8:11 (2020), 20–34 DOI: 10.3390/math8112063