Approaches to solving systems of linear algebraic equations using neural networks
    
    
  
  
  
      
      
      
        
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 153-164
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			System linear is the main solution for an essential class of mathematical modeling problems. The study of the possibility of solving system linear using neural networks will allow creating new approaches to solving problems of mathematical modeling. A new way of solving systems of linear equations using neural networks is presented. Feedforward networks and a stochastic gradient descent algorithm are used. The stages of designing a neural network are described, as well as the process of choosing the optimal NN structure, based on the computational experiments performed. The results of using neural networks for solving systems of linear equations are presented. The expediency of using NN for problems of this type is substantiated.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
systems of linear algebraic equations, Neural networks
Mots-clés : gradient descent.
                    
                  
                
                
                Mots-clés : gradient descent.
@article{VKAM_2022_40_3_a12,
     author = {V. A. Galkin and T. V. Gavrilenko and A. D. Smorodinov},
     title = {Approaches to solving systems of linear algebraic equations using neural networks},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {153--164},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a12/}
}
                      
                      
                    TY - JOUR AU - V. A. Galkin AU - T. V. Gavrilenko AU - A. D. Smorodinov TI - Approaches to solving systems of linear algebraic equations using neural networks JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 153 EP - 164 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a12/ LA - ru ID - VKAM_2022_40_3_a12 ER -
%0 Journal Article %A V. A. Galkin %A T. V. Gavrilenko %A A. D. Smorodinov %T Approaches to solving systems of linear algebraic equations using neural networks %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 153-164 %V 40 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a12/ %G ru %F VKAM_2022_40_3_a12
V. A. Galkin; T. V. Gavrilenko; A. D. Smorodinov. Approaches to solving systems of linear algebraic equations using neural networks. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 153-164. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a12/
