Mots-clés : gradient descent.
@article{VKAM_2022_40_3_a12,
author = {V. A. Galkin and T. V. Gavrilenko and A. D. Smorodinov},
title = {Approaches to solving systems of linear algebraic equations using neural networks},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {153--164},
year = {2022},
volume = {40},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a12/}
}
TY - JOUR AU - V. A. Galkin AU - T. V. Gavrilenko AU - A. D. Smorodinov TI - Approaches to solving systems of linear algebraic equations using neural networks JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 153 EP - 164 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a12/ LA - ru ID - VKAM_2022_40_3_a12 ER -
%0 Journal Article %A V. A. Galkin %A T. V. Gavrilenko %A A. D. Smorodinov %T Approaches to solving systems of linear algebraic equations using neural networks %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 153-164 %V 40 %N 3 %U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a12/ %G ru %F VKAM_2022_40_3_a12
V. A. Galkin; T. V. Gavrilenko; A. D. Smorodinov. Approaches to solving systems of linear algebraic equations using neural networks. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 153-164. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a12/
[1] Manzhula V. G., Fedyashov D. S., “Neironnye seti Kokhonena i nechetkie neironnye seti v intellektualnom analize dannykh”, Fundamentalnye issledovaniya, 2011, no. 4, 108-114
[2] Dolotov E. A. Kustikova V. D., “Sravnenie nekotorykh metodov resheniya zadachi detektirovaniya lits na izobrazheniyakh”, GraphiCon, 2017, no. 2017, 202-207
[3] Korneev D. S., “Ispolzovanie apparata neironnykh setei dlya sozdaniya modeli otsenki i upravleniya riskami predpriyatiya”, Upravlenie bolshimi sistemami, 2007, no. 17, 81-102
[4] Fransua Sh., Glubokoe obuchenie na Python, Piter, SPb, 2018, 400 pp.
[5] Popova Yu. B., Yatsynovich S. V., Obuchenie iskusstvennykh neironnykh setei metodom obratnogo rasprostraneniya oshibki, BNTU, Minsk, 2016
[6] Ivanovskii M. N., Shafeev O. P., “Primenenie metoda obratnogo rasprostraneniya oshibki dlya obucheniya neironnoi seti”, Informatsionnye tekhnologii v nauke i proizvodstve, V Vserossiiskaya molodezhnaya nauchno-tekhnicheskaya konferentsiya, 2018, 39–43
[7] Utkin P. S., Lektsiya po teme: Vvedenie v reshenie SLAU Normy vektorov i matrits. Chislo obuslovlennosti matritsy SLAU, MFTI, M., 2014
[8] Cybenko, G. V., “Approximation by Superpositions of a Sigmoidal function”, Mathematics of Control Signals and Systems, 2 (1989), 303–314 | DOI
[9] Shiyu Liang, R. Srikant, “Why deep neural networks for function approximation?”, Published as a conference paper at ICLR, 2017
[10] Hanin B., “Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations”, Mathematics, 7 (2019), 992 | DOI