Approximation of the waiting times distribution laws for foreshocks based on a fractional model of deformation activity
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 137-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article discusses two algorithms for constructing sequences of foreshocks associated with the main event of a given energy, based on the statistical model of the deformation process previously developed by the authors. Catalog of the Kamchatka Branch of the Geophysical Survey of Russia Academy of Sciences for the period from 1 January 1962 to 31 December 2002 for the Kuril-Kamchatka island arc subduction zone is used for research (area 46◦–62◦ N, 158◦–174◦ E) [28]. The method of «epochs» is applied to the sequences of foreshocks to obtain an empirical cumulative distribution function (eCDF) P∗($\tau$) of relative frequency of foreshocks occurrence depending on the time before the mainshock. Based on the fractional model of the deformation process developed by the authors, the empirical cumulative distribution function P∗($\tau$) of foreshocks waiting time are approximated by the Mittag-Leffler function and the exponential function. It is shown that the accuracy of the approximation by the Mittag-Leffler function is higher than the exponential one. A comparative analysis of three parameters of approximating functions for the empirical distributions obtained from the results of two algorithms for constructing sequences of foreshocks is carried out. Based on the obtained values of the parameters of the Mittag-Leffler function, the deformation process in the considered region can be considered non-stationary and close to the standard Poisson process.
Keywords: foreshocks, approximation, Mittag-Leffler function, non-local effect, non-stationarity, statistical model, fractional model.
Mots-clés : fractional Poisson process
@article{VKAM_2022_40_3_a11,
     author = {O. V. Sheremetyeva and B. M. Shevtsov},
     title = {Approximation of the waiting times distribution laws for foreshocks based on a fractional model of deformation activity},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {137--152},
     year = {2022},
     volume = {40},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a11/}
}
TY  - JOUR
AU  - O. V. Sheremetyeva
AU  - B. M. Shevtsov
TI  - Approximation of the waiting times distribution laws for foreshocks based on a fractional model of deformation activity
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 137
EP  - 152
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a11/
LA  - ru
ID  - VKAM_2022_40_3_a11
ER  - 
%0 Journal Article
%A O. V. Sheremetyeva
%A B. M. Shevtsov
%T Approximation of the waiting times distribution laws for foreshocks based on a fractional model of deformation activity
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 137-152
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a11/
%G ru
%F VKAM_2022_40_3_a11
O. V. Sheremetyeva; B. M. Shevtsov. Approximation of the waiting times distribution laws for foreshocks based on a fractional model of deformation activity. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 137-152. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a11/

[1] Mogi K., “Active periods in the world's shieft seismic belts”, Tectonophysics, 1974, no. 22, 265-282 | DOI

[2] Kagan Y., Knopoff L., “Earthquake risk prediction as a stochastic process”, Phys. Earth Planet. Inter., 1977, no. 14, 97-108 | DOI

[3] Bak P., Christensen K., Danon L., Scanlon T., “Unified scaling law for earthquakes”, Phys. Rev. Lett., 88:17 (2002), 178501-1–178501-4 | DOI

[4] Keilis-Borok V. I., Soloviev A. A., Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, Berlin-Heidelberg, Springer-Verlag, 2003, 337 pp.

[5] Gutenberg B., Richter C. F., “Seismicity of the Earth”, Geol. Soc. Am. Bull., 1944, no. 34, 185-188

[6] Utsu T., Ogata Y., Matsu’ura R. S., “The centenary of the Omori formula for a decay law of aftershocks activity”, J. Phys. Earth, 1995, no. 43, 1-33 | DOI

[7] Pisarenko V. F., Rodkin M. V., “Declustering of Seismicity Flow: Statistical Analysis”, Izv. Phys. Solid Earth, 2019, no. 55, 733-745, DOI: 10.31857/S0002-33372019538-52 | DOI

[8] Zaliapin I., Gabrielov A., Keilis-Borok V., Wong H., “Clustering Analysis of Seismicity and Aftershock Identification”, Phys. Rev. Lett., 2008, no. 101, 018501 | DOI

[9] Zaliapin I., Ben-Zion Y., “Earthquake declustering using the nearest-neighbor approach in space-time-magnitude domain”, J. Geophys. Res.: Solid Earth, 2020, no. 125, 1-33, DOI: 10.1029/2018JB017120

[10] Manna S. S., “Two-state model of self-organized criticality”, J. Phys. A.: Math. Gen., 1991, no. 125, L363-L369, DOI: 10.1088/0305-4470/24/7/009 | DOI

[11] Shebalin P. N., “Tsepochki epitsentrov kak indikator vozrastaniya radiusa korrelyatsii seismichnosti pered silnymi zemletryaseniyami”, Vulkanologiya i seismologiya, 2005, no. 1, 3-15

[12] Shebalin P. N., “Metodologiya prognoza silnykh zemletryasenii s periodom ozhidaniya menshe goda”, Algoritmy prognoza zemletryasenii. Vych. seismologiya., 2006, no. 37, 5-180

[13] Shevtsov B. M., Sagitova R. N., “Statistical analysis of seismic processes on the basis of the diffusion approach”, Doklady Earth Sciences, 426:1 (2009), 642-644 | DOI

[14] Shevtsov B. M., Sagitova R. N., “Diffuzionnyi podkhod v statisticheskom analize seismichnosti Kamchatki”, Vulkanologiya i seismologiya, 6:2 (2012), 56-66

[15] Shebalin P. N., Narteau C., “Depth Dependent Stress Revealed by Aftershocks”, Nat. Commun., 2017, no. 8, 1317-1318, DOI: 10.1038/s41467-017-01446-y | DOI

[16] Shebalin P. N., Narteau C., Baranov S. V., “Earthquake Productivity Law”, Geophys. J. Int., 2020, no. 222, 1264-1269, DOI: 10.1093/gji/ggaa252 | DOI

[17] Baiesi M., Paczuski M., “Complex networks of earthquakes and aftershocks”, Nonlinear Processes in Geophysics, 2005, no. 12, 1-11 | DOI

[18] Davy P., Sornette A., Sornette D., “Some consequences of a proposed fractal nature of continental faulting”, Nature, 1990, no. 348, 56–58 | DOI

[19] Kagan Y. Y., Knopoff L., “Spatial distribution of earthquakes: The two-point correlation function”, Geophys. J. Roy. Astr. Soc., 1980, no. 62, 303–320 | DOI

[20] Saichev A. I., Zaslavsky G. M., “Fractional kinetic equations: solutions and applications”, Chaos, 7:4 (1997), 753–764 | DOI

[21] Kagan Y.Y., “Observational evidence for earthquakes as nonlinear dynamic process”, Physica D., 1994, no. 77, 160-192 | DOI

[22] Metzler R., Klafter J., “The random walk’s guide to anomalous diffusion: a fractional dynamics approach”, Physics Reports, 2000, no. 339, 1-77 | DOI

[23] Carbone V., Sorriso-Valvo L., Harabaglia P., Guerra I., “Unified scaling law for waiting times between seismic events”, Europhys. Lett., 71:6 (2005), 1036-1042 DOI: 10.1209/epl/i2005-10185-0 | DOI

[24] Turcotte D., Fractals and chaos in geology and geophysics, Cambridge, London, 2nd ed., Cambridge University Press, 1997, 221 pp.

[25] Shevtsov B. M., Sheremetyeva O. V., “Fractional models of seismoacoustic and electromagnetic activity”, E3S Web of Conferences: Solar-Terrestrial Relations and Physics of Earthquake Precursors, 20 (2017), 02013, DOI: 10.1051/e3sconf/20172002013

[26] Sheremetyeva O. V., Shevtsov B. M., “Fractional Model of the Deformation Process”, Fractal Fract., 6 (2022), 372, DOI: 10.3390/fractalfract6070372 | DOI

[27] Sheremeteva O. V., “Stepennye zakonomernosti v posledovatelnostyakh statisticheski svyazannykh sobytii, predshestvuyuschikh glavnomu sobytiyu”, Vestnik KRAUNTs. Fiz.-mat. nauki, 33:4 (2020), 102-109, DOI: 10.26117/2079- 6641-2020-33-4-102-109

[28] The Geophysical Service of the Russian Academy of Sciences. Available online: http://www.gsras.ru/new/eng/catalog/

[29] Fedotov S. A., “O zakonomernostyakh raspredeleniya silnykh zemletryasenii Kamchatki, Kurilskikh ostrovov i severo-vostochnoi Yaponii”, Tr. IFZAN SSSR, Nauka, M., 1968, 121–150

[30] Dobrovolsky I. R., Zubkov S. I., Myachkin V. I., “Estimation of the size of earthquake preparation zones”, Pageoph., 1979, no. 117, 1025-1044 | DOI

[31] Popova A. V., Sheremeteva O. V., Sagitova R. N., “Analiz parametrov vyborki dannykh Global CMT Catalog dlya postroeniya statisticheskoi modeli seismicheskogo protsessa na primere zony subduktsii Kurilo-Kamchatskoi ostrovnoi dugi”, Vestnik KRAUNTs. Fiz.-mat. nauki, 5:2 (2012), 23-32, DOI: 10.18454/2079-6641-2012-5-2-23-32

[32] Davis J. C., Statistics and data analysis in geology, J. Wiley Sons. Inc., New York, 1986, 267 pp.