Fractional differential model of physical processes with saturation and its application to the description of the dynamics of COVID-19
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 119-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, a fractional differential model of physical processes with saturation was used to describe the dynamics of lethal outcomes of COVID-19 infection. The mathematical description of the model is given by the integro-differential Riccati equation with a derivative of a fractional variable order of the Gerasimov-Caputo type. This description makes it possible to take into account the effects of saturation and memory in the dynamics of the spread of COVID-19 among the population. Here, the saturation effect consists in reaching a plateau in the number of cases and deaths, which indicates the stabilization of the dynamics of the spread of COVID-19. The memory effect is that the symptoms of infection in infected people do not appear immediately, but with some delay. The article examines observational data on new cases of infection and the total number of deaths over a period of 2.5 years (from March to September 2022) in the Russian Federation and the Republic of Uzbekistan. Further, the parameters of the model are refined based on the studied data on the dynamics of COVID-19. With the help of the refined model, a preliminary forecast for the next six months is made with subsequent verification. Good agreement is shown between the model curves and the data curves for the total number of deaths from COVID-19.
Keywords: mathematical modeling of dynamic processes, saturation and memory effect, COVID-19, fractional derivative of variable order, Gerasimov-Caputo derivative.
Mots-clés : Riccati equation
@article{VKAM_2022_40_3_a10,
     author = {D. A. Tvyordyj and R. I. Parovik},
     title = {Fractional differential model of physical processes with saturation and its application to the description of the dynamics of {COVID-19}},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {119--136},
     year = {2022},
     volume = {40},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a10/}
}
TY  - JOUR
AU  - D. A. Tvyordyj
AU  - R. I. Parovik
TI  - Fractional differential model of physical processes with saturation and its application to the description of the dynamics of COVID-19
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 119
EP  - 136
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a10/
LA  - ru
ID  - VKAM_2022_40_3_a10
ER  - 
%0 Journal Article
%A D. A. Tvyordyj
%A R. I. Parovik
%T Fractional differential model of physical processes with saturation and its application to the description of the dynamics of COVID-19
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 119-136
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a10/
%G ru
%F VKAM_2022_40_3_a10
D. A. Tvyordyj; R. I. Parovik. Fractional differential model of physical processes with saturation and its application to the description of the dynamics of COVID-19. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 119-136. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a10/

[1] Taogetusang, Sirendaoerji, Li S., “New application to Riccati equation”, Chinese Physics B, 19 (2010), 080303 DOI: 10.1088/1674-1056/19/8/080303 | DOI

[2] Jeng S., Kilicman A., “Fractional Riccati Equation and Its Applications to Rough Heston Model Using Numerical Methods”, Symmetry, 12 (2010) DOI: 10.3390/sym12060959 | DOI

[3] Kurkin A. A., Kurkina O. E., Pelenovskii E. N., “Logisticheskie modeli rasprostraneniya epidemii”, Trudy NGTU im. R.E. Alekseeva., 129 (2020), 9–18

[4] Postan M. Ya., “Obobschennaya logisticheskaya krivaya: ee svoistva i otsenka parametrov”, Ekonomika i matematicheskie metody, 29:2 (1993), 305–310

[5] Drozdyuk A. V., Logistic curve, Choven, Toronto, 2019, 270 pp.

[6] Volterra V., Functional theory, integral and integro-differential equations, Nauka, Moscow, 1982

[7] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[8] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam, 2006, 523 pp.

[9] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 510 pp.

[10] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers, Background and Theory, v. I, Springer, Berlin, 2013, 373 pp. DOI: 10.1007/978-3-642-33911-0

[11] Ortigueira M. D., Valerio D., Machado J. T., “Variable order fractional systems”, Communications in Nonlinear Science and Numerical Simulation, 71 (2019), 231–243 DOI: 10.1016/j.cnsns.2018.12.003 | DOI

[12] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6(1):23 (2022), 1–27 DOI: 10.3390/fractalfract6010023

[13] Tvyordyj D. A., “The Riccati eqatuon with variable heredity”, Bulletin KRASEC. Physical and Mathematical Sciences, 17:1 (2017), 44–53 DOI: 10.18454/2313-0156-2017-16-1-61-68

[14] Parovik R. I. Tverdyi D. A., “Some Aspects of Numerical Analysis for a Model Nonlinear Fractional Variable Order Equation”, Mathematical and Computational Applications, 26:3 (2021), 55 DOI: 10.3390/mca26030055 | DOI

[15] Parovik R. I. Tverdyi D. A., “Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect”, Fractal and Fractional, 6(3):163 (2022), 1–35 DOI: 10.3390/fractalfract6030163

[16] Tverdyi D. A. Parovik R.,I., “Matematicheskoe modelirovanie nekotorykh logisticheskikh zakonov s pomoschyu ereditarnoi dinamicheskoi sistemy Rikkati”, Materialy 11 Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem (27–30 maya 2019 g.)., Matematicheskoe modelirovanie i kraevye zadachi, SamGTU, Samara, 2019, 348–352

[17] Parovik R. I., “On a finite-difference scheme for an hereditary oscillatory equation”, Journal of Mathematical Sciences, 253:4 (2021), 547–557 DOI: 10.1007/s10958-021-05252-2 | DOI

[18] Parovik R. I., “Mathematical modeling of linear fractional oscillators”, Mathematics, 8:11 (2020), 18–79 DOI: 10.3390/math8111879 | DOI

[19] Sun H., et al., “Finite difference schemes for variable-order time fractional diffusion equation”, International Journal of Bifurcation and Chaos, 22:04 (2012), 1250085 DOI: 10.1142/S021812741250085X | DOI

[20] Parovik R. I. Tverdyi D. A., “Fractional Riccati equation to model the dynamics of COVID-19 coronovirus infection”, Journal of Physics: Conference Series, 2094:163 (2021), 032042 DOI: 10.1088/1742-6596/2094/3/032042

[21] Ndairou F., Torres D. F. M., “Mathematical Analysis of a Fractional COVID-19 Model Applied to Wuhan, Spain and Portugal”, Axioms, 10:3 (2021), 135 DOI: 10.3390/axioms10030135 | DOI

[22] Mohammad M., Trounev A., Cattani C., “The dynamics of COVID-19 in the UAE based on fractional derivative modeling using Riesz wavelets simulation”, Advances in Difference Equations, 2021, no. 115, 1–14 DOI: 10.1186/s13662-021-03262-7

[23] Higazy M., Allehiany F. M., Mahmoud E. E., “Numerical study of fractional order COVID-19 pandemic transmission model in context of ABO blood group”, Results in Physics, 22 (2021), 103852 DOI: 0.1016/j.rinp.2021.103852 | DOI

[24] Baleanu D., Mohammadi H., Rezapour S., “A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative”, Advances in Difference Equations, 2020, no. 299, 1–27 DOI: 10.1186/s13662-020-02762-2

[25] Ritchie H., et. al., “Coronavirus Pandemic COVID-19”, dataset by Our World in Data, 2021 https://github.com/owid/covid-19-data/tree/master/public/data

[26] Cox D. R. Hinkley D. V., Theoretical Statistics, 1st edition, Chapman Hall/CRC, London, 1979, 528 pp.

[27] Hughes A. J., Grawoig D. E., Statistics: A Foundation for Analysis, Addison Wesley, Boston, 1971, 525 pp.

[28] Chicco D., Warrens M. J., Jurman G., “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation”, PeerJ Computer Scienc, 299 (2021) DOI: 10.7717/peerj-cs.623 | DOI