Mots-clés : Riccati equation
@article{VKAM_2022_40_3_a10,
author = {D. A. Tvyordyj and R. I. Parovik},
title = {Fractional differential model of physical processes with saturation and its application to the description of the dynamics of {COVID-19}},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {119--136},
year = {2022},
volume = {40},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a10/}
}
TY - JOUR AU - D. A. Tvyordyj AU - R. I. Parovik TI - Fractional differential model of physical processes with saturation and its application to the description of the dynamics of COVID-19 JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 119 EP - 136 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a10/ LA - ru ID - VKAM_2022_40_3_a10 ER -
%0 Journal Article %A D. A. Tvyordyj %A R. I. Parovik %T Fractional differential model of physical processes with saturation and its application to the description of the dynamics of COVID-19 %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 119-136 %V 40 %N 3 %U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a10/ %G ru %F VKAM_2022_40_3_a10
D. A. Tvyordyj; R. I. Parovik. Fractional differential model of physical processes with saturation and its application to the description of the dynamics of COVID-19. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 119-136. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a10/
[1] Taogetusang, Sirendaoerji, Li S., “New application to Riccati equation”, Chinese Physics B, 19 (2010), 080303 DOI: 10.1088/1674-1056/19/8/080303 | DOI
[2] Jeng S., Kilicman A., “Fractional Riccati Equation and Its Applications to Rough Heston Model Using Numerical Methods”, Symmetry, 12 (2010) DOI: 10.3390/sym12060959 | DOI
[3] Kurkin A. A., Kurkina O. E., Pelenovskii E. N., “Logisticheskie modeli rasprostraneniya epidemii”, Trudy NGTU im. R.E. Alekseeva., 129 (2020), 9–18
[4] Postan M. Ya., “Obobschennaya logisticheskaya krivaya: ee svoistva i otsenka parametrov”, Ekonomika i matematicheskie metody, 29:2 (1993), 305–310
[5] Drozdyuk A. V., Logistic curve, Choven, Toronto, 2019, 270 pp.
[6] Volterra V., Functional theory, integral and integro-differential equations, Nauka, Moscow, 1982
[7] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.
[8] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam, 2006, 523 pp.
[9] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 510 pp.
[10] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers, Background and Theory, v. I, Springer, Berlin, 2013, 373 pp. DOI: 10.1007/978-3-642-33911-0
[11] Ortigueira M. D., Valerio D., Machado J. T., “Variable order fractional systems”, Communications in Nonlinear Science and Numerical Simulation, 71 (2019), 231–243 DOI: 10.1016/j.cnsns.2018.12.003 | DOI
[12] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6(1):23 (2022), 1–27 DOI: 10.3390/fractalfract6010023
[13] Tvyordyj D. A., “The Riccati eqatuon with variable heredity”, Bulletin KRASEC. Physical and Mathematical Sciences, 17:1 (2017), 44–53 DOI: 10.18454/2313-0156-2017-16-1-61-68
[14] Parovik R. I. Tverdyi D. A., “Some Aspects of Numerical Analysis for a Model Nonlinear Fractional Variable Order Equation”, Mathematical and Computational Applications, 26:3 (2021), 55 DOI: 10.3390/mca26030055 | DOI
[15] Parovik R. I. Tverdyi D. A., “Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect”, Fractal and Fractional, 6(3):163 (2022), 1–35 DOI: 10.3390/fractalfract6030163
[16] Tverdyi D. A. Parovik R.,I., “Matematicheskoe modelirovanie nekotorykh logisticheskikh zakonov s pomoschyu ereditarnoi dinamicheskoi sistemy Rikkati”, Materialy 11 Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem (27–30 maya 2019 g.)., Matematicheskoe modelirovanie i kraevye zadachi, SamGTU, Samara, 2019, 348–352
[17] Parovik R. I., “On a finite-difference scheme for an hereditary oscillatory equation”, Journal of Mathematical Sciences, 253:4 (2021), 547–557 DOI: 10.1007/s10958-021-05252-2 | DOI
[18] Parovik R. I., “Mathematical modeling of linear fractional oscillators”, Mathematics, 8:11 (2020), 18–79 DOI: 10.3390/math8111879 | DOI
[19] Sun H., et al., “Finite difference schemes for variable-order time fractional diffusion equation”, International Journal of Bifurcation and Chaos, 22:04 (2012), 1250085 DOI: 10.1142/S021812741250085X | DOI
[20] Parovik R. I. Tverdyi D. A., “Fractional Riccati equation to model the dynamics of COVID-19 coronovirus infection”, Journal of Physics: Conference Series, 2094:163 (2021), 032042 DOI: 10.1088/1742-6596/2094/3/032042
[21] Ndairou F., Torres D. F. M., “Mathematical Analysis of a Fractional COVID-19 Model Applied to Wuhan, Spain and Portugal”, Axioms, 10:3 (2021), 135 DOI: 10.3390/axioms10030135 | DOI
[22] Mohammad M., Trounev A., Cattani C., “The dynamics of COVID-19 in the UAE based on fractional derivative modeling using Riesz wavelets simulation”, Advances in Difference Equations, 2021, no. 115, 1–14 DOI: 10.1186/s13662-021-03262-7
[23] Higazy M., Allehiany F. M., Mahmoud E. E., “Numerical study of fractional order COVID-19 pandemic transmission model in context of ABO blood group”, Results in Physics, 22 (2021), 103852 DOI: 0.1016/j.rinp.2021.103852 | DOI
[24] Baleanu D., Mohammadi H., Rezapour S., “A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative”, Advances in Difference Equations, 2020, no. 299, 1–27 DOI: 10.1186/s13662-020-02762-2
[25] Ritchie H., et. al., “Coronavirus Pandemic COVID-19”, dataset by Our World in Data, 2021 https://github.com/owid/covid-19-data/tree/master/public/data
[26] Cox D. R. Hinkley D. V., Theoretical Statistics, 1st edition, Chapman Hall/CRC, London, 1979, 528 pp.
[27] Hughes A. J., Grawoig D. E., Statistics: A Foundation for Analysis, Addison Wesley, Boston, 1971, 525 pp.
[28] Chicco D., Warrens M. J., Jurman G., “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation”, PeerJ Computer Scienc, 299 (2021) DOI: 10.7717/peerj-cs.623 | DOI