On representation of solution of the diffusion equation with Dzhrbashyan-Nersesyan operators
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 16-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper investigates a parabolic partial differential equation with fractional differentiation with respect to one of two independent variables associated with time. Such equations are usually referred to the class of fractional diffusion equations. The fractional differentiation operator is a linear combination of two Dzhrbashyan-Nersesyan operators. The main result of the work is a theorem on the general representation of regular solutions of the equation under study in an infinite strip. A fundamental solution is constructed in terms of the Wright function and its main properties are studied. In particular, formulas for fractional differentiation are proved, the asymptotic behavior is investigated, and estimates are obtained for the fundamental solution and its derivatives for large and small values of the self-similar variable, and its positiveness is proved. To construct a general solution, the Green's function method adapted to equations containing Dzhrbashyan-Nersesyan operators is used. Particular cases of the equation under consideration include equations with Riemann-Liouville and Gerasimov-Caputo derivatives. Therefore, the results obtained remain valid for equations with these fractional differentiation operators and their combinations.
Mots-clés : fractional diffusion equation
Keywords: Dzhrbashyan-Nersesyan operators, fractional derivative, Wright function.
@article{VKAM_2022_40_3_a1,
     author = {F.T. Bogatyreva},
     title = {On representation of solution of the diffusion equation with {Dzhrbashyan-Nersesyan} operators},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {16--27},
     year = {2022},
     volume = {40},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a1/}
}
TY  - JOUR
AU  - F.T. Bogatyreva
TI  - On representation of solution of the diffusion equation with Dzhrbashyan-Nersesyan operators
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 16
EP  - 27
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a1/
LA  - ru
ID  - VKAM_2022_40_3_a1
ER  - 
%0 Journal Article
%A F.T. Bogatyreva
%T On representation of solution of the diffusion equation with Dzhrbashyan-Nersesyan operators
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 16-27
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a1/
%G ru
%F VKAM_2022_40_3_a1
F.T. Bogatyreva. On representation of solution of the diffusion equation with Dzhrbashyan-Nersesyan operators. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 16-27. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a1/

[1] Dzhrbashyan M.M., Nersesyan A.B., “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN ArmSSR. Matem., 3:1 (1968), 3–28

[2] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[3] Pskhu A.V., “Reshenie pervoi kraevoi zadachi dlya uravneniya diffuzii drobnogo poryadka”, Differents. uravneniya, 39:9 (2003), 1286–1289

[4] Pskhu A.V., “Reshenie kraevykh zadach dlya uravneniya diffuzii drobnogo poryadka metodom funktsii Grina”, Differents. uravneniya, 39:10 (2003), 1430–1433

[5] Eidelman S.D., Kochubei A.N., “Cauchy problem for fractional diffusion equations”, J. Differential Equations, 199 (2004), 211–255 | DOI

[6] Pskhu A.V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[7] Pskhu A.V., “Uravnenie diffuzii drobnogo poryadka so mnogimi vremennymi peremennymi”, Matem. modelirovanie i kraev. zadachi, 2006. Ch. 3, 187–190

[8] Luchko Yu., “Boundary value problems for the generalized timefractional diffusion equation of distributed order”, Fract. Calc. Appl. Anal., 12:4 (2009), 409–422

[9] Luchko Yu., “Initial-boundary-value problems for the generalized multiterm time-fractional diffusion equation”, J. Math. Anal. Appl., 374:2 (2011) (2011), 538–548 | DOI

[10] Mamchuev M.O., Kraevye zadachi dlya uravnenii i sistem uravnenii s chastnymi proizvodnymi drobnogo poryadka, Nalchik, 2013, 200 pp.

[11] Pskhu A.V., “Green functions of the first boundary-value problem for a fractional diffusion-wave equation in multidimensional domains”, Mathematics, 2020, no. 8(4), 464 | DOI

[12] Pskhu A.V., “Stabilization of solutions to the Cauchy problem for fractional diffusion-wave equation”, Journal of Mathematical Sciences, 2020, no. 250, 800–810 | DOI

[13] Pskhu A.V., Rekhviashvili S., “Fractional diffusion-wave equation with application in electrodynamics”, Journal of Mathematical Sciences, 2020, no. 8

[14] Pskhu A.V., “Boundary value problem for fractional diffusion equation in a curvilinear angle domain”, Bulletin of the Karaganda university Mathematics series, 2022, no. 1(105)/2022, 83–95 | DOI

[15] Pskhu A.V., “Fundamentalnoe reshenie diffuzionno- volnovogo uravneniya drobnogo poryadka”, Izv. RAN. Ser.matem., 73:2 (2009), 141–182

[16] Pskhu A.V., “Uravnenie drobnoi diffuzii s operatorom diskretno raspredelennogo differentsirovaniya”, Sibirskie elektronnye matematicheskie izvestiya, 12 (2016), 1078–1098

[17] Bogatyreva F.T., “Kraevye zadachi dlya uravneniya v chastnykh proizvodnykh pervogo poryadka s operatorami Dzhrbashyana – Nersesyana”, Chelyabinskii fiziko-matematicheskii zhurnal, 1:1 (2021), 78–88